pred.TAAG {TAG} | R Documentation |
Prediction from the TAAG Process
Description
This function provides predictions from a TAAG process.
Usage
pred.TAAG(object, newX, predict.CI = FALSE, zalpha = 1.96)
Arguments
object |
object of class inheriting from "TAAG". |
newX |
matrix of new values of x at which predictions are needed. |
predict.CI |
logical value indicating if the confidence interval at each prediction point is required. |
zalpha |
normal critical value for the confidence interval. Default is 1.96 for 95 % confidence intervals. The zalpha works only when predict.CI is TRUE. |
Value
The function returns predictions at newX and the confidence intervals (if predict.CI is TRUE). If predict.CI is TRUE, the values returned from the function is a list containing:
Prediction |
the prediction at newX. |
ConfidenceLB |
the lower bound of the prediction confidence interval at newX.(Note that the default is 95 %.) |
ConfidenceUB |
the upper bound of the prediction confidence interval at newX. |
References
Lin, L.-H. and Joseph, V. R. (2020) "Transformation and Additivity in Gaussian Processes",Technometrics, 62, 525-535. DOI:10.1080/00401706.2019.1665592.
See Also
TAAG
for the estimates of the parameters in the TAAG.
Examples
n <- 20
p <- 2
library(randtoolbox)
X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE)
y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2]))
ini.TAG <- initial.TAG(y, X)
par.TAG <- TAG(ini.TAG)
N <- 1000 # size of testing samples
X.test <- sobol(N, dim = p, init = TRUE, scrambling = 2, seed = 5, normal = FALSE)
ytrue <- exp(2*sin(0.5*pi*X.test[,1]) + 0.5*cos(2.5*pi*X.test[,2]))
pre.TAG <- pred.TAG(par.TAG, X.test)
library(DiceKriging)
set.seed(2)
temp.m <- km(formula=~1, design=X, response=par.TAG$ty,
covtype="gauss",nugget = (10^-15), multistart = 4,
control = list(trace = FALSE, verbose = FALSE))
nu.est <- sqrt(2*(coef(temp.m)$range^2))
par.TAAG <- TAAG(par.TAG, nu.est)
pre.TAAG <- pred.TAAG(par.TAAG, X.test)
mean((pre.TAAG$Prediction-ytrue)^2)