check.TAAG {TAG} | R Documentation |
Check TAAG
Description
This function provides a table for checking whther the TAAG process fits the data well better than an ordinary kriging model.
Usage
check.TAAG(object)
Arguments
object |
object of class inheriting from "TAAG". |
Value
A table of the fitted negative likelihood values and cross validation errors obtained from TAAG and the ordinary kriging models from dicekriging and mlegp is returned. Note that, for both criteria, the model with a smaller value are a better model.
References
Lin, L.-H. and Joseph, V. R. (2020) "Transformation and Additivity in Gaussian Processes",Technometrics, 62, 525-535. DOI:10.1080/00401706.2019.1665592.
See Also
TAAG
for the estimates of the parameters in the TAG and TAAG, respectively.
Examples
n <- 20
p <- 2
library(randtoolbox)
X <- sobol(n, dim = p, init = TRUE, scrambling = 2, seed = 20, normal = FALSE)
y <- exp(2*sin(0.5*pi*X[,1]) + 0.5*cos(2.5*pi*X[,2]))
ini.TAG <- initial.TAG(y, X)
par.TAG <- TAG(ini.TAG)
N <- 1000
X.test <- sobol(N, dim = p, init = TRUE, scrambling = 2, seed = 5, normal = FALSE)
ytrue <- exp(2*sin(0.5*pi*X.test[,1]) + 0.5*cos(2.5*pi*X.test[,2]))
pre.TAG <- pred.TAG(par.TAG, X.test)
library(DiceKriging)
set.seed(2)
temp.m <- km(formula=~1, design=X, response=par.TAG$ty,
covtype="gauss",nugget = (10^-15), multistart = 4,
control = list(trace = FALSE))
nu.est <- sqrt(2*(coef(temp.m)$range^2))
par.TAAG <- TAAG(par.TAG, nu.est)
check.table <- check.TAAG(par.TAAG)
check.table
[Package TAG version 0.5.1 Index]