gaussbarypd {T4transport} | R Documentation |
Barycenter of Gaussian Distributions in \mathbf{R}^p
Description
Given a collection of n
-dimensional Gaussian distributions \mathcal{N}(\mu_i, \Sigma_i^2)
for i=1,\ldots,n
, compute the Wasserstein barycenter of order 2.
For the barycenter computation of variance components, we use a fixed-point
algorithm by Álvarez-Esteban et al. (2016).
Usage
gaussbarypd(means, vars, weights = NULL, ...)
Arguments
means |
an |
vars |
a |
weights |
a weight of each image; if |
... |
extra parameters including
|
Value
a named list containing
- mean
a length-
p
vector for mean of the estimated barycenter distribution.- var
a
(p\times p)
matrix for variance of the estimated barycenter distribution.
References
Álvarez-Esteban PC, del Barrio E, Cuesta-Albertos JA, Matrán C (2016). “A Fixed-Point Approach to Barycenters in Wasserstein Space.” Journal of Mathematical Analysis and Applications, 441(2), 744–762. ISSN 0022247X.
See Also
gaussbary1d()
for univariate case.
Examples
#----------------------------------------------------------------------
# Two Gaussians in R^2
#----------------------------------------------------------------------
# GENERATE PARAMETERS
# means
par_mean = rbind(c(-4,0), c(4,0))
# covariances
par_vars = array(0,c(2,2,2))
par_vars[,,1] = cbind(c(4,-2),c(-2,4))
par_vars[,,2] = cbind(c(4,+2),c(+2,4))
# COMPUTE THE BARYCENTER OF EQUAL WEIGHTS
gmean = gaussbarypd(par_mean, par_vars)
# GET COORDINATES FOR DRAWING
pt_type1 = gaussvis2d(par_mean[1,], par_vars[,,1])
pt_type2 = gaussvis2d(par_mean[2,], par_vars[,,2])
pt_gmean = gaussvis2d(gmean$mean, gmean$var)
# VISUALIZE
opar <- par(no.readonly=TRUE)
plot(pt_gmean, lwd=2, col="red", type="l",
main="Barycenter", xlab="", ylab="",
xlim=c(-6,6))
lines(pt_type1)
lines(pt_type2)
par(opar)