| scSM {T4cluster} | R Documentation | 
Spectral Clustering by Shi and Malik (2000)
Description
The version of Shi and Malik first constructs the affinity matrix
A_{ij} = \exp(-d(x_i, d_j)^2 / \sigma^2)
where \sigma is a common bandwidth parameter and performs k-means (or possibly, GMM) clustering on 
the row-space of eigenvectors for the random-walk graph laplacian matrix
L=D^{-1}(D-A)
.
Usage
scSM(data, k = 2, sigma = 1, ...)
Arguments
| data | an  | 
| k | the number of clusters (default: 2). | 
| sigma | bandwidth parameter (default: 1). | 
| ... | extra parameters including 
 | 
Value
a named list of S3 class T4cluster containing 
- cluster
- a length- - nvector of class labels (from- 1:k).
- eigval
- eigenvalues of the graph laplacian's spectral decomposition. 
- embeds
- an - (n\times k)low-dimensional embedding.
- algorithm
- name of the algorithm. 
References
Shi J, Malik J (Aug./2000). “Normalized Cuts and Image Segmentation.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905. ISSN 01628828.
Examples
# -------------------------------------------------------------
#            clustering with 'iris' dataset
# -------------------------------------------------------------
## PREPARE WITH SUBSET OF DATA
data(iris)
sid = sample(1:150, 50)
X   = as.matrix(iris[sid,1:4])
lab = as.integer(as.factor(iris[sid,5]))
## EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y
## CLUSTERING WITH DIFFERENT K VALUES
cl2 = scSM(X, k=2)$cluster
cl3 = scSM(X, k=3)$cluster
cl4 = scSM(X, k=4)$cluster
## VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=cl2, pch=19, main="scSM: k=2")
plot(X2d, col=cl3, pch=19, main="scSM: k=3")
plot(X2d, col=cl4, pch=19, main="scSM: k=4")
par(opar)