sc12L {T4cluster} | R Documentation |
Spectral Clustering by Li and Guo (2012)
Description
Li and Guo proposed to construct an affinity matrix
A_{ij} = \exp(-d(x_i, d_j)^2 / 2 \sigma^2)
and adjust the matrix by neighbor propagation. Then, standard spectral clustering from the symmetric, normalized graph laplacian is applied.
Usage
sc12L(data, k = 2, sigma = 1, ...)
Arguments
data |
an |
k |
the number of clusters (default: 2). |
sigma |
common bandwidth parameter (default: 1). |
... |
extra parameters including
|
Value
a named list of S3 class T4cluster
containing
- cluster
a length-
n
vector of class labels (from1:k
).- eigval
eigenvalues of the graph laplacian's spectral decomposition.
- embeds
an
(n\times k)
low-dimensional embedding.- algorithm
name of the algorithm.
References
Li X, Guo L (2012). “Constructing Affinity Matrix in Spectral Clustering Based on Neighbor Propagation.” Neurocomputing, 97, 125–130. ISSN 09252312.
See Also
Examples
# -------------------------------------------------------------
# clustering with 'iris' dataset
# -------------------------------------------------------------
## PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))
## EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y
## CLUSTERING WITH DIFFERENT K VALUES
cl2 = sc12L(X, k=2)$cluster
cl3 = sc12L(X, k=3)$cluster
cl4 = sc12L(X, k=4)$cluster
## VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=cl2, pch=19, main="sc12L: k=2")
plot(X2d, col=cl3, pch=19, main="sc12L: k=3")
plot(X2d, col=cl4, pch=19, main="sc12L: k=4")
par(opar)