sc11Y {T4cluster} | R Documentation |
Spectral Clustering by Yang et al. (2011)
Description
As a data-driven method, the algorithm recovers geodesic distance from a k-nearest
neighbor graph scaled by an (exponential) parameter \rho
and applies
random-walk spectral clustering. Authors referred their method as
density sensitive similarity function.
Usage
sc11Y(data, k = 2, nnbd = 7, rho = 2, ...)
Arguments
data |
an |
k |
the number of clusters (default: 2). |
nnbd |
neighborhood size to define data-driven bandwidth parameter (default: 7). |
rho |
exponent scaling parameter (default: 2). |
... |
extra parameters including
|
Value
a named list of S3 class T4cluster
containing
- cluster
a length-
n
vector of class labels (from1:k
).- eigval
eigenvalues of the graph laplacian's spectral decomposition.
- embeds
an
(n\times k)
low-dimensional embedding.- algorithm
name of the algorithm.
References
Yang P, Zhu Q, Huang B (2011). “Spectral Clustering with Density Sensitive Similarity Function.” Knowledge-Based Systems, 24(5), 621–628. ISSN 09507051.
Examples
# -------------------------------------------------------------
# clustering with 'iris' dataset
# -------------------------------------------------------------
## PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))
## EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y
## CLUSTERING WITH DIFFERENT K VALUES
cl2 = sc11Y(X, k=2)$cluster
cl3 = sc11Y(X, k=3)$cluster
cl4 = sc11Y(X, k=4)$cluster
## VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=cl2, pch=19, main="sc11Y: k=2")
plot(X2d, col=cl3, pch=19, main="sc11Y: k=3")
plot(X2d, col=cl4, pch=19, main="sc11Y: k=4")
par(opar)