sc10Z {T4cluster} | R Documentation |
Spectral Clustering by Zhang et al. (2010)
Description
The algorithm defines a set of data-driven
bandwidth parameters p_{ij}
by constructing a similarity matrix.
Then the affinity matrix is defined as
A_{ij} = \exp(-d(x_i, d_j)^2 / 2 p_{ij})
and the standard spectral clustering of Ng, Jordan, and Weiss (scNJW
) is applied.
Usage
sc10Z(data, k = 2, ...)
Arguments
data |
an |
k |
the number of clusters (default: 2). |
... |
extra parameters including
|
Value
a named list of S3 class T4cluster
containing
- cluster
a length-
n
vector of class labels (from1:k
).- eigval
eigenvalues of the graph laplacian's spectral decomposition.
- embeds
an
(n\times k)
low-dimensional embedding.- algorithm
name of the algorithm.
References
Zhang Y, Zhou J, Fu Y (2010). “Spectral Clustering Algorithm Based on Adaptive Neighbor Distance Sort Order.” In The 3rd International Conference on Information Sciences and Interaction Sciences, 444–447. ISBN 978-1-4244-7384-7.
Examples
# -------------------------------------------------------------
# clustering with 'iris' dataset
# -------------------------------------------------------------
## PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))
## EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y
## CLUSTERING WITH DIFFERENT K VALUES
cl2 = sc10Z(X, k=2)$cluster
cl3 = sc10Z(X, k=3)$cluster
cl4 = sc10Z(X, k=4)$cluster
## VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=cl2, pch=19, main="sc10Z: k=2")
plot(X2d, col=cl3, pch=19, main="sc10Z: k=3")
plot(X2d, col=cl4, pch=19, main="sc10Z: k=4")
par(opar)