psm {T4cluster} | R Documentation |
Compute Posterior Similarity Matrix
Description
Let clustering be a label from data of N
observations and suppose
we are given M
such labels. Posterior similarity matrix, as its name suggests,
computes posterior probability for a pair of observations to belong to the same cluster, i.e.,
P_{ij} = P(\textrm{label}(X_i) = \textrm{label}(X_j))
under the scenario where multiple clusterings are samples drawn from a posterior distribution within
the Bayesian framework. However, it can also be used for non-Bayesian settings as
psm
is a measure of uncertainty embedded in any algorithms with non-deterministic components.
Usage
psm(partitions)
Arguments
partitions |
partitions can be provided in either (1) an |
Value
an (N\times N)
matrix, whose elements (i,j)
are posterior probability
for an observation i
and j
belong to the same cluster.
See Also
Examples
# -------------------------------------------------------------
# PSM with 'iris' dataset + k-means++
# -------------------------------------------------------------
## PREPARE WITH SUBSET OF DATA
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))
## EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y
## RUN K-MEANS++ 100 TIMES
partitions = list()
for (i in 1:100){
partitions[[i]] = kmeanspp(X)$cluster
}
## COMPUTE PSM
iris.psm = psm(partitions)
## VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
image(iris.psm[,150:1], axes=FALSE, main="PSM")
par(opar)