gmm16G {T4cluster} | R Documentation |
Weighted GMM by Gebru et al. (2016)
Description
When each observation x_i
is associated with a weight w_i > 0
,
modifying the GMM formulation is required. Gebru et al. (2016) proposed a method
to use scaled covariance based on an observation that
\mathcal{N}\left(x\vert \mu, \Sigma\right)^w \propto \mathcal{N}\left(x\vert \mu, \frac{\Sigma}{w}\right)
by considering the positive weight as a role of precision. Currently, we provide a method with fixed weight case only while the paper also considers a Bayesian formalism on the weight using Gamma distribution.
Usage
gmm16G(data, k = 2, weight = NULL, ...)
Arguments
data |
an |
k |
the number of clusters (default: 2). |
weight |
a positive weight vector of length |
... |
extra parameters including
|
Value
a named list of S3 class T4cluster
containing
- cluster
a length-
n
vector of class labels (from1:k
).- mean
a
(k\times p)
matrix where each row is a class mean.- variance
a
(p\times p\times k)
array where each slice is a class covariance.- weight
a length-
k
vector of class weights that sum to 1.- loglkd
log-likelihood of the data for the fitted model.
- algorithm
name of the algorithm.
References
Gebru ID, Alameda-Pineda X, Forbes F, Horaud R (2016). “EM Algorithms for Weighted-Data Clustering with Application to Audio-Visual Scene Analysis.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(12), 2402–2415. ISSN 0162-8828, 2160-9292.
Examples
# -------------------------------------------------------------
# clustering with 'iris' dataset
# -------------------------------------------------------------
## PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))
## EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y
## CLUSTERING WITH DIFFERENT K VALUES
cl2 = gmm16G(X, k=2)$cluster
cl3 = gmm16G(X, k=3)$cluster
cl4 = gmm16G(X, k=4)$cluster
## VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=cl2, pch=19, main="gmm16G: k=2")
plot(X2d, col=cl3, pch=19, main="gmm16G: k=3")
plot(X2d, col=cl4, pch=19, main="gmm16G: k=4")
par(opar)