gmm {T4cluster} | R Documentation |
Finite Gaussian Mixture Model
Description
Finite Gaussian Mixture Model (GMM) is a well-known probabilistic clustering algorithm by fitting the following distribution to the data
f(x; \left\lbrace \mu_k, \Sigma_k \right\rbrace_{k=1}^K) = \sum_{k=1}^K w_k N(x; \mu_k, \Sigma_k)
with parameters w_k
's for cluster weights, \mu_k
's for class means, and \Sigma_k
's for class covariances.
This function is a wrapper for Armadillo's GMM function, which supports two types of covariance models.
Usage
gmm(data, k = 2, ...)
Arguments
data |
an |
k |
the number of clusters (default: 2). |
... |
extra parameters including
|
Value
a named list of S3 class T4cluster
containing
- cluster
a length-
n
vector of class labels (from1:k
).- mean
a
(k\times p)
matrix where each row is a class mean.- variance
a
(p\times p\times k)
array where each slice is a class covariance.- weight
a length-
k
vector of class weights that sum to 1.- loglkd
log-likelihood of the data for the fitted model.
- algorithm
name of the algorithm.
Examples
# -------------------------------------------------------------
# clustering with 'iris' dataset
# -------------------------------------------------------------
## PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))
## EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y
## CLUSTERING WITH DIFFERENT K VALUES
cl2 = gmm(X, k=2)$cluster
cl3 = gmm(X, k=3)$cluster
cl4 = gmm(X, k=4)$cluster
## VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=cl2, pch=19, main="gmm: k=2")
plot(X2d, col=cl3, pch=19, main="gmm: k=3")
plot(X2d, col=cl4, pch=19, main="gmm: k=4")
par(opar)