funhclust {T4cluster} | R Documentation |
Functional Hierarchical Clustering
Description
Given N
curves \gamma_1 (t), \gamma_2 (t), \ldots, \gamma_N (t) : I \rightarrow \mathbf{R}
,
perform hierarchical agglomerative clustering with fastcluster package's implementation of
the algorithm. Dissimilarity for curves is measured by L_p
metric.
Usage
funhclust(
fdobj,
p = 2,
method = c("single", "complete", "average", "mcquitty", "ward.D", "ward.D2",
"centroid", "median"),
members = NULL
)
Arguments
fdobj |
a |
p |
an exponent in |
method |
agglomeration method to be used. This must be one of |
members |
|
Value
an object of class hclust
. See hclust
for details.
References
Ferreira L, Hitchcock DB (2009). “A Comparison of Hierarchical Methods for Clustering Functional Data.” Communications in Statistics - Simulation and Computation, 38(9), 1925–1949. ISSN 0361-0918, 1532-4141.
Examples
# -------------------------------------------------------------
# two types of curves
#
# type 1 : sin(x) + perturbation; 20 OF THESE ON [0, 2*PI]
# type 2 : cos(x) + perturbation; 20 OF THESE ON [0, 2*PI]
# -------------------------------------------------------------
## PREPARE : USE 'fda' PACKAGE
# Generate Raw Data
datx = seq(from=0, to=2*pi, length.out=100)
daty = array(0,c(100, 40))
for (i in 1:20){
daty[,i] = sin(datx) + rnorm(100, sd=0.1)
daty[,i+20] = cos(datx) + rnorm(100, sd=0.1)
}
# Wrap as 'fd' object
mybasis <- fda::create.bspline.basis(c(0,2*pi), nbasis=10)
myfdobj <- fda::smooth.basis(datx, daty, mybasis)$fd
## RUN THE ALGORITHM
hcsingle = funhclust(myfdobj, method="single")
## VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
matplot(datx, daty[,1:20], type="l", main="Curves Type 1")
matplot(datx, daty[,21:40], type="l", main="Curves Type 2")
plot(hcsingle, main="hclust with 'single' linkage")
par(opar)