T2EQ-package {T2EQ} | R Documentation |
Functions for Applying the T^2
-Test for Equivalence
Description
Contains functions for applying the T^2
-test for equivalence.
The T^2
-test for equivalence is a multivariate two-sample equivalence test.
Distance measure of the test is the Mahalanobis distance.
For multivariate normally distributed data the T^2
-test for equivalence is exact and UMPI.
The function T2EQ() implements the T^2
-test for equivalence according to Wellek (2010).
The function T2EQ.dissolution.profiles.hoffelder() implements a variant of the T^2
-test for equivalence according to Hoffelder (2016) for the equivalence comparison of highly variable dissolution profiles.
Details
Index of help topics:
T2EQ Function for applying the T^2-test for equivalence T2EQ-package Functions for Applying the T^2-Test for Equivalence T2EQ.dissolution.profiles.hoffelder The T^2-test for equivalence for dissolution data ex_data_JoBS Example dataset from Hoffelder et al. (2015) ex_data_pharmind Example dataset from Hoffelder (2016)
Author(s)
Thomas Hoffelder
Maintainer: Thomas Hoffelder <thomas.hoffelder@boehringer-ingelheim.com>
References
Wellek, S. (2010), Testing Statistical Hypotheses of Equivalence and Noninferiority. Second edition. Boca Raton: Chapman & Hall/CRC.
Hoffelder, T., Goessl, R., Wellek, S. (2015). Multivariate Equivalence Tests for Use in Pharmaceutical Development. Journal of Biopharmaceutical Statistics, 25:3, 417-437. URL: http://dx.doi.org/10.1080/10543406.2014.920344
Hoffelder, T. (2016). Highly Variable Dissolution Profiles: Comparison of T^2
-Test for Equivalence and f_2
Based Methods. pharmind, 78:4, 587-592.
URL: http://www.ecv.de/suse_item.php?suseId=Z|pi|8430
Tsong, Y., Hammerstrom, T., Sathe, P., Shah, V.P. (1996). Statistical Assessment of Mean Differences between two Dissolution Data Sets. Drug Information Journal, 30:4, 1105-1112. URL: http://dx.doi.org/10.1177/009286159603000427
EMA (2010). Guidance on the Investigation of Bioequivalence. URL: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/01/WC500070039.pdf
Examples
## Not run: A recalculation of the example evaluation in Hoffelder et al. (2015)
can be done with the following code:
## End(Not run)
data(ex_data_JoBS)
REF_JoBS <- cbind(ex_data_JoBS[ which(ex_data_JoBS$Group=='REF'), ]
[c("Diss_15_min","Diss_20_min","Diss_25_min")])
TEST_JoBS <- cbind(ex_data_JoBS[ which(ex_data_JoBS$Group=='TEST'), ]
[c("Diss_15_min","Diss_20_min","Diss_25_min")])
equivalence_margin_JoBS <- 0.74^2
test_T2EQ_JoBS <- T2EQ(X=REF_JoBS,Y=TEST_JoBS,eq_margin = equivalence_margin_JoBS)
## Not run: A recalculation of the results underlying Figure 1 in Hoffelder (2016)
can be done with the following code:
## End(Not run)
data(ex_data_pharmind)
REF_pharmind <- cbind(ex_data_pharmind[ which(ex_data_pharmind$Group=='REF'), ]
[c("Diss_10_min","Diss_20_min","Diss_30_min")])
TEST_pharmind <- cbind(ex_data_pharmind[ which(ex_data_pharmind$Group=='TEST'), ]
[c("Diss_10_min","Diss_20_min","Diss_30_min")])
test_T2EQ.dissolution.profiles.hoffelder_pharmind <-
T2EQ.dissolution.profiles.hoffelder(X=REF_pharmind,Y=TEST_pharmind)