SymTS-package {SymTS} | R Documentation |
Symmetric Tempered Stable Distributions
Description
Contains methods for simulation and for evaluating the pdf, cdf, and quantile functions for symmetric stable, symmetric classical tempered stable, and symmetric power tempered stable distributions.
Details
The DESCRIPTION file:
Package: | SymTS |
Type: | Package |
Title: | Symmetric Tempered Stable Distributions |
Version: | 1.0-2 |
Date: | 2023-01-14 |
Author: | Michael Grabchak <mgrabcha@uncc.edu> and Lijuan Cao <lcao2@uncc.edu> |
Maintainer: | Michael Grabchak <mgrabcha@uncc.edu> |
Description: | Contains methods for simulation and for evaluating the pdf, cdf, and quantile functions for symmetric stable, symmetric classical tempered stable, and symmetric power tempered stable distributions. |
License: | GPL (>= 3) |
Index of help topics:
SymTS-package Symmetric Tempered Stable Distributions dCTS PDF of CTS Distribution dPowTS PDF of PowTS Distribution dSaS PDF of Symmetric Stable Distribution pCTS CDF of CTS Distribution pPowTS PDF of PowTS Distribution pSaS CDF of Symmetric Stable Distribution qCTS Quantile Function of CTS Distribution qPowTS Quantile Function of PowTS Distribution qSaS Quantile Function of Symmetric Stable Distribution rCTS Simulation from CTS Distribution rPowTS Simulation from PowTS Distribution rSaS Simulation from Symmetric Stable Distribution
Author(s)
Michael Grabchak <mgrabcha@uncc.edu> and Lijuan Cao <lcao2@uncc.edu>
Maintainer: Michael Grabchak <mgrabcha@uncc.edu>
References
M. Grabchak (2016). Tempered Stable Distributions: Stochastic Models for Multiscale Processes. Springer, Cham.
S. T. Rachev, Y. S. Kim, M. L. Bianchi, and F. J. Fabozzi (2011). Financial Models with Levy Processes and Volatility Clustering. Wiley, Chichester.
J. Rosinski (2007). Tempering stable processes. Stochastic Processes and Their Applications, 117(6):677-707.
G. Samorodnitsky and M. Taqqu (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, Boca Raton.