| survival_forest_matrix {SurvivalClusteringTree} | R Documentation | 
Build a Survival Forest (Data Supplied as Matrices)
Description
The function 
survival_forest_matrix build a survival forest given the survival outcomes and predictors of numeric and factor variables.
Usage
survival_forest_matrix(
  time,
  event,
  matrix_numeric,
  matrix_factor,
  weights = rep(1, length(time)),
  significance = 0.05,
  min_weights = 50,
  missing = "omit",
  test_type = "univariate",
  cut_type = 0,
  nboot = 100,
  seed = 0
)
Arguments
| time | survival times, a numeric vector. 
 | 
| event | survival events, a logical vector. 
 | 
| matrix_numeric | numeric predictors, a numeric matrix. 
 | 
| matrix_factor | factor predictors, a character matrix. 
 | 
| weights | sample weights, a numeric vector. 
 | 
| significance | significance threshold, a numeric value. 
Stop the splitting algorithm when no splits give a p-value smaller than  | 
| min_weights | minimum weight threshold, a numeric value. 
The weights in a node are greater than  | 
| missing | a character value that specifies the handling of missing data. 
If  | 
| test_type | a character value that specifies the type of statistical tests.
If  | 
| cut_type | an integer value that specifies how to cut between two numeric values.
If  | 
| nboot | an integer value that specifies the number of bootstrap replications. | 
| seed | an integer value that specifies the seed. | 
Details
Build a Survival Forest (Data Supplied as Matrices)
Value
A list containing the information of the survival forest fit.
Examples
library(survival)
a_survival_forest<-
  survival_forest_matrix(
    time=lung$time,
    event=lung$status==2,
    matrix_numeric=data.matrix(lung[,c(4,6:9),drop=FALSE]),
    matrix_factor=data.matrix(lung[,5,drop=FALSE]),
    nboot=20)