WeibullDiag {SurvRegCensCov} | R Documentation |
Diagnostic Plot of Adequacy of Weibull Distribution
Description
This function constructs a diagnostic plot of the adequacy of the Weibull distribution for survival data with respect to one categorical covariate. If the Weibull distribution fits the data well, then the lines produced should be linear and parallel.
Usage
WeibullDiag(formula, data = parent.frame(), labels = names(m$strata))
Arguments
formula |
A formula containing a |
data |
Data set. |
labels |
A vector containing labels for the plotted lines. |
Details
As discussed in Klein and Moeschberger (2003), one method for checking the adequacy of the Weibull model with a
categorical covariate is to produce stratified Kaplan-Meier estimates (KM), which can be transformed to estimate
the log cumulative hazard for each stratum. Then in a plot of \log(t)
versus \log(-\log(KM))
, the
lines should be linear and parallel. This can be seen as the log cumulative hazard for the Weibull distribution
is
\log H(t) = \log \lambda + \alpha \log t.
Value
Produces a plot of log Time vs. log Estimated Cumulative Hazard for each level of the predictor
(similarly to what can be obtained using plot.survfit
and the fun = "cloglog"
option),
as well as a data set containing that information.
Author(s)
Sarah R. Haile, Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, sarah.haile@uzh.ch
References
Klein, J. and Moeschberger, M. (2003). Survival analysis: techniques for censored and truncated data. 2nd edition, Springer.
See Also
Requires survival. A similar plot can be produced using plot.survfit
and the option fun = "cloglog"
.
Examples
data(larynx)
WeibullDiag(Surv(time, death) ~ stage, data = larynx)