KMMI {SurvMI} | R Documentation |
Kaplan-Meier estimation with event uncertainty
Description
KM estimation for survival data when event uncertainty presents. KM plot will be output if plot=TRUE specfied.
Usage
KMMI(data_list,nMI,covariates,data_orig = NULL,plot = TRUE,
time_var=NULL,event_var=NULL)
Arguments
data_list |
The data list which has been transformed from the long format by uc_data_transform function. |
nMI |
Number of imputations (>1). If missing, weighted statistics would be output instead. |
covariates |
The grouping varaible, no need to be factorized. If missing then the overall KM is returned. |
plot |
T/F, whether output a KM plot, the plot potentially contains KM curves from original dataset and imputed/weighted dataset. |
data_orig |
The original data without any uncertain events. If supplies then user can compare results from certain events only and all possible events. |
time_var |
Time variable in data_orig. If user provides the orig dataset then user need to specify the time and event indicator variable in the orignal dataset. |
event_var |
Event indicator variable in the original data set. |
Value
KM_mi |
A dataset contains MI estimation and variance at all potential event time |
KM_cook |
A dataset contains weighted KM estimation and variance at all potential event time |
ngroup |
Number of groups |
cate_level |
Values of the categorical variable |
nMI |
Number of imputed datasets |
Author(s)
Yiming Chen
References
[1]Cook TD. Adjusting survival analysis for the presence of unadjudicated study events. Controlled clinical trials. 2000;21(3):208-222.
[2]Cook TD, Kosorok MR. Analysis of time-to-event data with incomplete event adjudication. Journal of the american statistical association. 2004;99(468):1140-1152.
[3]Klein JP, Moeschberger ML. Survival Analysis : Techniques for Censored and Truncated Data. New York: Springer; 1997.
[4]Rubin DB. Multiple Imputation for Nonresponse in Surveys. New York: Wiley; 1987
See Also
Examples
##an example with more potential event case
##data_orig was created as keeping the event with largest weights for individuals
df_x<-data_sim(n=500,0.8,haz_c=0.5/365)
data_intrim<-uc_data_transform(data=df_x,
var_list=c("id_long","trt_long"),
var_list_new=c("id","trt"),
time="time_long",
prob="prob_long")
df_y<-data_sim2(data_list=data_intrim,covariates=c("trt"),percentage=1)
data_orig<-df_y[df_y$prob==0|df_y$prob==1,]
data_orig<-data_orig[!duplicated(data_orig$id),]
data_orig$cens<-data_orig$prob
##weighted estimation
KM_res<-KMMI(data_list=data_intrim,nMI=NULL,covariates=c("trt"),plot=TRUE,data_orig=NULL)
##MI estimation
KMMI(data_list=data_intrim,nMI=1000,covariates=c("trt"),plot=TRUE,data_orig=NULL)
data_intrim2<-uc_data_transform(data=df_y, var_list=c("id","trt"),
var_list_new=NULL,time="time", prob="prob")
KMMI(data_list=data_intrim2,nMI=1000,covariates=c("trt"),plot=TRUE,data_orig=data_orig,
time_var=c("time"),event_var=c("cens"))