sample_copula_parameters {Surrogate} | R Documentation |
Sample Unidentifiable Copula Parameters
Description
The sample_copula_parameters()
function samples the unidentifiable copula
parameters for the partly identifiable D-vine copula model, see for example
fit_copula_model_BinCont()
and fit_model_SurvSurv()
for more information
regarding the D-vine copula model.
Usage
sample_copula_parameters(
copula_family2,
n_sim,
eq_cond_association = FALSE,
lower = c(-1, -1, -1, -1),
upper = c(1, 1, 1, 1)
)
Arguments
copula_family2 |
Copula family of the other bivariate copulas. For the
possible options, see |
n_sim |
Number of copula parameter vectors to be sampled. |
eq_cond_association |
(boolean) Indicates whether |
lower |
(numeric) Vector of length 4 that provides the lower limit,
|
upper |
(numeric) Vector of length 4 that provides the upper limit,
|
Value
A n_sim
by 4
numeric matrix where each row corresponds to a
sample for \boldsymbol{\theta}_{unid}
.
Sampling
In the D-vine copula model in the Information-Theoretic Causal Inference
(ITCI) framework, the following copulas are not identifiable: c_{23}
,
c_{13;2}
, c_{24;3}
, c_{14;23}
. Let the corresponding
copula
parameters be
\boldsymbol{\theta}_{unid} = (\theta_{23}, \theta_{13;2},
\theta_{24;3}, \theta_{14;23})'.
The allowable range for this parameter vector depends on the corresponding copula families. For parsimony and comparability across different copula families, the sampling procedure consists of two steps:
Sample Spearman's rho parameters from a uniform distribution,
\boldsymbol{\rho}_{unid} = (\rho_{23}, \rho_{13;2}, \rho_{24;3}, \rho_{14;23})' \sim U(\boldsymbol{a}, \boldsymbol{b}).
Transform the sampled Spearman's rho parameters to the copula parameter scale,
\boldsymbol{\theta}_{unid}
.
These two steps are repeated n_sim
times.
Conditional Independence
In addition to range restrictions through the lower
and upper
arguments,
we allow for so-called conditional independence assumptions.
These assumptions entail that \rho_{13;2} = 0
and \rho_{24;3} =
0
. Or in other words, U_1 \perp U_3 \, | \, U_2
and U_2 \perp U_4 \, | \, U_3
.
In the context of a surrogate evaluation trial (where (U_1, U_2, U_3,
U_4)'
corresponds to the probability integral transformation of (T_0,
S_0, S_1, T_1)'
) this assumption could be justified by subject-matter knowledge.