plot.SPF.BinCont {Surrogate} | R Documentation |
Plot the surrogate predictive function (SPF) in the causal-inference single-trial setting in the binary-continuous case.
Description
This function is used to create several plots related to the surrogate predictive function (SPF) in the single-trial setting within the causal-inference framework when the surrogate endpoint is continuous (normally distributed) and the true endpoint is a binary outcome. For details, see Alonso et al. (2024).
Usage
## S3 method for class 'SPF.BinCont'
plot(x, Histogram.SPF=TRUE, Causal.necessity=TRUE, Best.pred=TRUE, Max.psi=TRUE, ...)
Arguments
x |
A fitted object of class |
Histogram.SPF |
Logical. Should histograms of SPF be provided? When it is requested, a matrix of histograms illustrating various combination of the SPF, i.e., the |
Causal.necessity |
Logical. Should a histogram showing the |
Best.pred |
Logical. Should a bar plot showing the frequency of |
Max.psi |
Logical. Should a histogram showing the |
... |
Extra graphical parameters to be passed to |
Author(s)
Fenny Ong, Wim Van der Elst, Ariel Alonso, and Geert Molenberghs
References
Alonso, A., Ong, F., Van der Elst, W., Molenberghs, G., & Callegaro, A. (2024). Assessing a continuous surrogate predictive value for a binary true endpoint based on causal inference and information theory in vaccine trial.
See Also
Examples
## Not run: # Time consuming code part
data(Schizo)
fit.ica <- ICA.BinCont.BS(Dataset = Schizo, Surr = BPRS, True = PANSS_Bin, nb = 10,
Theta.S_0=c(-10,-5,5,10,10,10,10,10), Theta.S_1=c(-10,-5,5,10,10,10,10,10),
Treat=Treat, M=50, Seed=1)
fit.spf <- SPF.BinCont(fit.ica, a=-5, b=5)
summary(fit.spf)
plot(fit.spf)
## End(Not run)