plot MaxEntICA BinBin {Surrogate} | R Documentation |
Plots the sensitivity-based and maximum entropy based Individual Causal Association when S and T are binary outcomes
Description
This function provides a plot that displays the frequencies or densities of the individual causal association (ICA; R^2_{H}
) as identified based on the sensitivity- (using the functions ICA.BinBin
, ICA.BinBin.Grid.Sample
, or ICA.BinBin.Grid.Full
) and maximum entropy-based (using the function MaxEntICABinBin
) approaches.
Usage
## S3 method for class 'MaxEntICA.BinBin'
plot(x, ICA.Fit,
Type="Density", Xlab, col, Main, ...)
Arguments
x |
An object of class |
ICA.Fit |
An object of class |
Type |
The type of plot that is produced. When |
Xlab |
The legend of the X-axis of the plot. |
col |
The color of the bins (frequeny plot) or line (density plot). Default |
Main |
The title of the plot. |
... |
Other arguments to be passed to |
Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
References
Alonso, A., & Van der Elst, W. (2015). A maximum-entropy approach for the evluation of surrogate endpoints based on causal inference.
See Also
Examples
# Sensitivity-based ICA results using ICA.BinBin.Grid.Sample
ICA <- ICA.BinBin.Grid.Sample(pi1_1_=0.341, pi0_1_=0.119, pi1_0_=0.254,
pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078, Seed=1,
Monotonicity=c("No"), M=5000)
# Maximum-entropy based ICA
MaxEnt <- MaxEntICABinBin(pi1_1_=0.341, pi0_1_=0.119, pi1_0_=0.254,
pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078)
# Plot results
plot(x=MaxEnt, ICA.Fit=ICA)