plot Information-Theoretic BinCombn {Surrogate} | R Documentation |
Provides plots of trial- and individual-level surrogacy in the Information-Theoretic framework when both S and T are binary, or when S is binary and T is continuous (or vice versa)
Description
Produces plots that provide a graphical representation of trial- and/or individual-level surrogacy (R2_ht and R2_hInd per cluster) based on the Information-Theoretic approach of Alonso & Molenberghs (2007).
Usage
## S3 method for class 'FixedBinBinIT'
plot(x, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level.By.Trial=TRUE,
Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv,
Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ...)
## S3 method for class 'FixedBinContIT'
plot(x, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level.By.Trial=TRUE,
Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv,
Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ...)
## S3 method for class 'FixedContBinIT'
plot(x, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level.By.Trial=TRUE,
Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv,
Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ...)
Arguments
x |
An object of class |
Trial.Level |
Logical. If |
Weighted |
Logical. This argument only has effect when the user requests a trial-level surrogacy plot (i.e., when |
Indiv.Level.By.Trial |
Logical. If |
Xlab.Indiv |
The legend of the X-axis of the plot that depicts the estimated |
Ylab.Indiv |
The legend of the Y-axis of the plot that shows the estimated |
Xlab.Trial |
The legend of the X-axis of the plot that depicts trial-level surrogacy. Default "Treatment effect on the surrogate endpoint ( |
Ylab.Trial |
The legend of the Y-axis of the plot that depicts trial-level surrogacy. Default "Treatment effect on the true endpoint ( |
Main.Indiv |
The title of the plot that depicts individual-level surrogacy. Default "Individual-level surrogacy". |
Main.Trial |
The title of the plot that depicts trial-level surrogacy. Default "Trial-level surrogacy". |
Par |
Graphical parameters for the plot. Default |
... |
Extra graphical parameters to be passed to |
Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
References
Alonso, A, & Molenberghs, G. (2007). Surrogate marker evaluation from an information theory perspective. Biometrics, 63, 180-186.
See Also
FixedBinBinIT, FixedBinContIT, FixedContBinIT
Examples
## Not run: # Time consuming (>5sec) code part
# Generate data with continuous Surr and True
Sim.Data.MTS(N.Total=5000, N.Trial=50, R.Trial.Target=.9, R.Indiv.Target=.9,
Fixed.Effects=c(0, 0, 0, 0), D.aa=10, D.bb=10, Seed=1,
Model=c("Full"))
# Dichtomize Surr and True
Surr_Bin <- Data.Observed.MTS$Surr
Surr_Bin[Data.Observed.MTS$Surr>.5] <- 1
Surr_Bin[Data.Observed.MTS$Surr<=.5] <- 0
True_Bin <- Data.Observed.MTS$True
True_Bin[Data.Observed.MTS$True>.15] <- 1
True_Bin[Data.Observed.MTS$True<=.15] <- 0
Data.Observed.MTS$Surr <- Surr_Bin
Data.Observed.MTS$True <- True_Bin
# Assess surrogacy using info-theoretic framework
Fit <- FixedBinBinIT(Dataset = Data.Observed.MTS, Surr = Surr,
True = True, Treat = Treat, Trial.ID = Trial.ID,
Pat.ID = Pat.ID, Number.Bootstraps=100)
# Examine results
summary(Fit)
plot(Fit, Trial.Level = FALSE, Indiv.Level.By.Trial=TRUE)
plot(Fit, Trial.Level = TRUE, Indiv.Level.By.Trial=FALSE)
## End(Not run)