plot Causal-Inference BinBin {Surrogate} | R Documentation |
Plots the (Meta-Analytic) Individual Causal Association and related metrics when S and T are binary outcomes
Description
This function provides a plot that displays the frequencies, percentages, cumulative percentages or densities of the individual causal association (ICA; R^2_{H}
or R_{H}
), and/or the odds ratios for S
and T
(\theta_{S}
and \theta_{T}
).
Usage
## S3 method for class 'ICA.BinBin'
plot(x, R2_H=TRUE, R_H=FALSE, Theta_T=FALSE,
Theta_S=FALSE, Type="Density", Labels=FALSE, Xlab.R2_H,
Main.R2_H, Xlab.R_H, Main.R_H, Xlab.Theta_S, Main.Theta_S, Xlab.Theta_T,
Main.Theta_T, Cex.Legend=1, Cex.Position="topright",
col, Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ylim, ...)
Arguments
x |
An object of class |
R2_H |
Logical. When |
R_H |
Logical. When |
Theta_T |
Logical. When |
Theta_S |
Logical. When |
Type |
The type of plot that is produced. When |
Labels |
Logical. When |
Xlab.R2_H |
The legend of the X-axis of the |
Main.R2_H |
The title of the |
Xlab.R_H |
The legend of the X-axis of the |
Main.R_H |
The title of the |
Xlab.Theta_S |
The legend of the X-axis of the |
Main.Theta_S |
The title of the |
Xlab.Theta_T |
The legend of the X-axis of the |
Main.Theta_T |
The title of the |
Cex.Legend |
The size of the legend when |
Cex.Position |
The position of the legend, |
col |
The color of the bins. Default |
Par |
Graphical parameters for the plot. Default |
ylim |
The (min, max) values for the Y-axis |
.
... |
Extra graphical parameters to be passed to |
Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
References
Alonso, A., Van der Elst, W., Molenberghs, G., Buyse, M., & Burzykowski, T. (submitted). A causal-inference approach for the validation of surrogate endpoints based on information theory and sensitivity analysis.
See Also
Examples
# Compute R2_H given the marginals,
# assuming monotonicity for S and T and grids
# pi_0111=seq(0, 1, by=.001) and
# pi_1100=seq(0, 1, by=.001)
ICA <- ICA.BinBin.Grid.Sample(pi1_1_=0.261, pi1_0_=0.285,
pi_1_1=0.637, pi_1_0=0.078, pi0_1_=0.134, pi_0_1=0.127,
Monotonicity=c("General"), M=2500, Seed=1)
# Plot the results (density of R2_H):
plot(ICA, Type="Density", R2_H=TRUE, R_H=FALSE,
Theta_T=FALSE, Theta_S=FALSE)