plot ICA.ContCont.MultS {Surrogate} | R Documentation |
Plots the Individual Causal Association in the setting where there are multiple continuous S and a continuous T
Description
This function provides a plot that displays the frequencies, percentages, or cumulative percentages of the multivariate individual causal association (). These figures are useful to examine the sensitivity of the obtained results with respect to the assumptions regarding the correlations between the counterfactuals.
Usage
## S3 method for class 'ICA.ContCont.MultS'
plot(x, R2_H=FALSE, Corr.R2_H=TRUE,
Type="Percent", Labels=FALSE,
Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), col,
Prediction.Error.Reduction=FALSE, ...)
Arguments
x |
An object of class |
R2_H |
Should a plot of the |
Corr.R2_H |
Should a plot of the corrected |
Type |
The type of plot that is produced. When |
Labels |
Logical. When |
Par |
Graphical parameters for the plot. Default |
col |
The color of the bins. Default |
Prediction.Error.Reduction |
Should a plot be shown that shows the prediction error (reisdual error) in predicting |
... |
Extra graphical parameters to be passed to |
Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
References
Van der Elst, W., Alonso, A. A., & Molenberghs, G. (2017). Univariate versus multivariate surrogate endpoints.
See Also
ICA.ContCont, ICA.ContCont.MultS, ICA.ContCont.MultS_alt, MICA.ContCont, plot MinSurrContCont
Examples
## Not run: #time-consuming code parts
# Specify matrix Sigma (var-cavar matrix T_0, T_1, S1_0, S1_1, ...)
# here for 1 true endpoint and 3 surrogates
s<-matrix(rep(NA, times=64),8)
s[1,1] <- 450; s[2,2] <- 413.5; s[3,3] <- 174.2; s[4,4] <- 157.5;
s[5,5] <- 244.0; s[6,6] <- 229.99; s[7,7] <- 294.2; s[8,8] <- 302.5
s[3,1] <- 160.8; s[5,1] <- 208.5; s[7,1] <- 268.4
s[4,2] <- 124.6; s[6,2] <- 212.3; s[8,2] <- 287.1
s[5,3] <- 160.3; s[7,3] <- 142.8
s[6,4] <- 134.3; s[8,4] <- 130.4
s[7,5] <- 209.3;
s[8,6] <- 214.7
s[upper.tri(s)] = t(s)[upper.tri(s)]
# Marix looks like:
# T_0 T_1 S1_0 S1_1 S2_0 S2_1 S2_0 S2_1
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
# T_0 [1,] 450.0 NA 160.8 NA 208.5 NA 268.4 NA
# T_1 [2,] NA 413.5 NA 124.6 NA 212.30 NA 287.1
# S1_0 [3,] 160.8 NA 174.2 NA 160.3 NA 142.8 NA
# S1_1 [4,] NA 124.6 NA 157.5 NA 134.30 NA 130.4
# S2_0 [5,] 208.5 NA 160.3 NA 244.0 NA 209.3 NA
# S2_1 [6,] NA 212.3 NA 134.3 NA 229.99 NA 214.7
# S3_0 [7,] 268.4 NA 142.8 NA 209.3 NA 294.2 NA
# S3_1 [8,] NA 287.1 NA 130.4 NA 214.70 NA 302.5
# Conduct analysis
ICA <- ICA.ContCont.MultS(M=100, N=200, Show.Progress = TRUE,
Sigma=s, G = seq(from=-1, to=1, by = .00001), Seed=c(123),
Model = "Delta_T ~ Delta_S1 + Delta_S2 + Delta_S3")
# Explore results
summary(ICA)
plot(ICA)
## End(Not run)