plot Causal-Inference ContCont {Surrogate} | R Documentation |
Plots the (Meta-Analytic) Individual Causal Association when S and T are continuous outcomes
Description
This function provides a plot that displays the frequencies, percentages, or cumulative percentages of the individual causal association (ICA; \rho_{\Delta}
) and/or the meta-analytic individual causal association (MICA; \rho_{M}
) values. These figures are useful to examine the sensitivity of the obtained results with respect to the assumptions regarding the correlations between the counterfactuals (for details, see Alonso et al., submitted; Van der Elst et al., submitted). Optionally, it is also possible to obtain plots that are useful in the examination of the plausibility of finding a good surrogate endpoint when an object of class ICA.ContCont
is considered.
Usage
## S3 method for class 'ICA.ContCont'
plot(x, Xlab.ICA, Main.ICA, Type="Percent",
Labels=FALSE, ICA=TRUE, Good.Surr=FALSE, Main.Good.Surr,
Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), col, ...)
## S3 method for class 'MICA.ContCont'
plot(x, ICA=TRUE, MICA=TRUE, Type="Percent",
Labels=FALSE, Xlab.ICA, Main.ICA, Xlab.MICA, Main.MICA,
Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), col, ...)
Arguments
x |
An object of class |
ICA |
Logical. When |
MICA |
Logical. This argument only has effect when the |
Type |
The type of plot that is produced. When |
Labels |
Logical. When |
Xlab.ICA |
The legend of the X-axis of the ICA plot. Default " |
Main.ICA |
The title of the ICA plot. Default "ICA". |
Xlab.MICA |
The legend of the X-axis of the MICA plot. Default " |
Main.MICA |
The title of the MICA plot. Default "MICA". |
Good.Surr |
Logical. When |
Main.Good.Surr |
The title of the plot of |
Par |
Graphical parameters for the plot. Default |
col |
The color of the bins. Default |
... |
Extra graphical parameters to be passed to |
Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
References
Alonso, A., Van der Elst, W., Molenberghs, G., Buyse, M., & Burzykowski, T. (submitted). On the relationship between the causal inference and meta-analytic paradigms for the validation of surrogate markers.
Van der Elst, W., Alonso, A., & Molenberghs, G. (submitted). An exploration of the relationship between causal inference and meta-analytic measures of surrogacy.
See Also
ICA.ContCont, MICA.ContCont, plot MinSurrContCont
Examples
# Plot of ICA
# Generate the vector of ICA values when rho_T0S0=rho_T1S1=.95, and when the
# grid of values {0, .2, ..., 1} is considered for the correlations
# between the counterfactuals:
SurICA <- ICA.ContCont(T0S0=.95, T1S1=.95, T0T1=seq(0, 1, by=.2), T0S1=seq(0, 1, by=.2),
T1S0=seq(0, 1, by=.2), S0S1=seq(0, 1, by=.2))
# Plot the results:
plot(SurICA)
# Same plot but add the percentages of ICA values that are equal to or larger
# than the midpoint values of the bins
plot(SurICA, Labels=TRUE)
# Plot of both ICA and MICA
# Generate the vector of ICA and MICA values when R_trial=.8, rho_T0S0=rho_T1S1=.8,
# D.aa=5, D.bb=10, and when the grid of values {0, .2, ..., 1} is considered
# for the correlations between the counterfactuals:
SurMICA <- MICA.ContCont(Trial.R=.80, D.aa=5, D.bb=10, T0S0=.8, T1S1=.8,
T0T1=seq(0, 1, by=.2), T0S1=seq(0, 1, by=.2), T1S0=seq(0, 1, by=.2),
S0S1=seq(0, 1, by=.2))
# Plot the vector of generated ICA and MICA values
plot(SurMICA, ICA=TRUE, MICA=TRUE)