UnimixedContCont {Surrogate} | R Documentation |
Fits univariate mixed-effect models to assess surrogacy in the meta-analytic multiple-trial setting (continuous-continuous case)
Description
The function UnimixedContCont
uses the univariate mixed-effects approach to estimate trial- and individual-level surrogacy when the data of multiple clinical trials are available. The user can specify whether a (weighted or unweighted) full, semi-reduced, or reduced model should be fitted. See the Details section below. Further, the Individual Causal Association (ICA) is computed.
Usage
UnimixedContCont(Dataset, Surr, True, Treat, Trial.ID, Pat.ID, Model=c("Full"),
Weighted=TRUE, Min.Trial.Size=2, Alpha=.05, Number.Bootstraps=500,
Seed=sample(1:1000, size=1), T0T1=seq(-1, 1, by=.2), T0S1=seq(-1, 1, by=.2),
T1S0=seq(-1, 1, by=.2), S0S1=seq(-1, 1, by=.2), ...)
Arguments
Dataset |
A |
Surr |
The name of the variable in |
True |
The name of the variable in |
Treat |
The name of the variable in |
Trial.ID |
The name of the variable in |
Pat.ID |
The name of the variable in |
Model |
The type of model that should be fitted, i.e., |
Weighted |
Logical. If |
Min.Trial.Size |
The minimum number of patients that a trial should contain to be included in the analysis. If the number of patients in a trial is smaller than the value specified by |
Alpha |
The |
Number.Bootstraps |
The confidence intervals for |
Seed |
The seed to be used in the bootstrap procedure. Default |
T0T1 |
A scalar or vector that contains the correlation(s) between the counterfactuals T0 and T1 that should be considered in the computation of |
T0S1 |
A scalar or vector that contains the correlation(s) between the counterfactuals T0 and S1 that should be considered in the computation of |
T1S0 |
A scalar or vector that contains the correlation(s) between the counterfactuals T1 and S0 that should be considered in the computation of |
S0S1 |
A scalar or vector that contains the correlation(s) between the counterfactuals S0 and S1 that should be considered in the computation of |
... |
Other arguments to be passed to the function |
Details
When the full bivariate mixed-effects model is fitted to assess surrogacy in the meta-analytic framework (for details, Buyse & Molenberghs, 2000), computational issues often occur. In that situation, the use of simplified model-fitting strategies may be warranted (for details, see Burzykowski et al., 2005; Tibaldi et al., 2003).
The function UnimixedContCont
implements one such strategy, i.e., it uses a two-stage univariate mixed-effects modelling approach to assess surrogacy. In the first stage of the analysis, two univariate mixed-effects models are fitted to the data. When a full or semi-reduced model is requested (by using the argument Model=c("Full")
or Model=c("SemiReduced")
in the function call), the following univariate models are fitted:
S_{ij}=\mu_{S}+m_{Si}+(\alpha+a_{i})Z_{ij}+\varepsilon_{Sij},
T_{ij}=\mu_{T}+m_{Ti}+(\beta+b_{i})Z_{ij}+\varepsilon_{Tij},
where i
and j
are the trial and subject indicators, S_{ij}
and T_{ij}
are the surrogate and true endpoint values of subject j
in trial i
, Z_{ij}
is the treatment indicator for subject j
in trial i
, \mu_{S}
and \mu_{T}
are the fixed intercepts for S and T, m_{Si}
and m_{Ti}
are the corresponding random intercepts, \alpha
and \beta
are the fixed treatment effects for S and T, and a_{i}
and b_{i}
are the corresponding random treatment effects, respectively. The error terms \varepsilon_{Sij}
and \varepsilon_{Tij}
are assumed to be independent.
When a reduced model is requested (by using the argument Model=c("Reduced")
in the function call), the following two univariate models are fitted:
S_{ij}=\mu_{S}+(\alpha+a_{i})Z_{ij}+\varepsilon_{Sij},
T_{ij}=\mu_{T}+(\beta+b_{i})Z_{ij}+\varepsilon_{Tij},
where \mu_{S}
and \mu_{T}
are the common intercepts for S and T (i.e., it is assumed that the intercepts for the surrogate and the true endpoints are identical in each of the trials). The other parameters are the same as defined above, and \varepsilon_{Sij}
and \varepsilon_{Tij}
are again assumed to be independent.
An estimate of R^2_{indiv}
is computed as r(\varepsilon_{Sij}, \varepsilon_{Tij})^2
.
Next, the second stage of the analysis is conducted. When a full model is requested by the user (by using the argument Model=c("Full")
in the function call), the following model is fitted:
\widehat{\beta}_{i}=\lambda_{0}+\lambda_{1}\widehat{\mu_{Si}}+\lambda_{2}\widehat{\alpha}_{i}+\varepsilon_{i},
where the parameter estimates for \beta_i
, \mu_{Si}
, and \alpha_i
are based on the models that were fitted in stage 1, i.e., \beta_{i}=\beta+b_{i}
, \mu_{Si}=\mu_{S}+m_{Si}
, and \alpha_{i}=\alpha+a_{i}
.
When a reduced or semi-reduced model is requested by the user (by using the arguments Model=c("SemiReduced")
or Model=c("Reduced")
in the function call), the following model is fitted:
\widehat{\beta}_{i}=\lambda_{0}+\lambda_{1}\widehat{\alpha}_{i}+\varepsilon_{i},
where the parameters are the same as defined above.
When the argument Weighted=FALSE
is used in the function call, the model that is fitted in stage 2 is an unweighted linear regression model. When a weighted model is requested (using the argument Weighted=TRUE
in the function call), the information that is obtained in stage 1 is weighted according to the number of patients in a trial.
The classical coefficient of determination of the fitted stage 2 model provides an estimate of R^2_{trial}
.
Value
An object of class UnimixedContCont
with components,
Data.Analyze |
Prior to conducting the surrogacy analysis, data of patients who have a missing value for the surrogate and/or the true endpoint are excluded. In addition, the data of trials (i) in which only one type of the treatment was administered, and (ii) in which either the surrogate or the true endpoint was a constant (i.e., all patients within a trial had the same surrogate and/or true endpoint value) are excluded. In addition, the user can specify the minimum number of patients that a trial should contain in order to include the trial in the analysis. If the number of patients in a trial is smaller than the value specified by |
Obs.Per.Trial |
A |
Results.Stage.1 |
The results of stage 1 of the two-stage model fitting approach: a |
Residuals.Stage.1 |
A |
Fixed.Effect.Pars |
A |
Random.Effect.Pars |
A |
Results.Stage.2 |
An object of class |
Trial.R2 |
A |
Indiv.R2 |
A |
Trial.R |
A |
Indiv.R |
A |
Cor.Endpoints |
A |
D.Equiv |
The variance-covariance matrix of the trial-specific intercept and treatment effects for the surrogate and true endpoints (when a full or semi-reduced model is fitted, i.e., when |
ICA |
A fitted object of class |
T0T0 |
The variance of the true endpoint in the control treatment condition. |
T1T1 |
The variance of the true endpoint in the experimental treatment condition. |
S0S0 |
The variance of the surrogate endpoint in the control treatment condition. |
S1S1 |
The variance of the surrogate endpoint in the experimental treatment condition. |
Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
References
Burzykowski, T., Molenberghs, G., & Buyse, M. (2005). The evaluation of surrogate endpoints. New York: Springer-Verlag.
Buyse, M., Molenberghs, G., Burzykowski, T., Renard, D., & Geys, H. (2000). The validation of surrogate endpoints in meta-analysis of randomized experiments. Biostatistics, 1, 49-67.
Tibaldi, F., Abrahantes, J. C., Molenberghs, G., Renard, D., Burzykowski, T., Buyse, M., Parmar, M., et al., (2003). Simplified hierarchical linear models for the evaluation of surrogate endpoints. Journal of Statistical Computation and Simulation, 73, 643-658.
See Also
UnifixedContCont
, BifixedContCont
, BimixedContCont
, plot Meta-Analytic
Examples
## Not run: #Time consuming code part
# Conduct an analysis based on a simulated dataset with 2000 patients, 100 trials,
# and Rindiv=Rtrial=.8
# Simulate the data:
Sim.Data.MTS(N.Total=2000, N.Trial=100, R.Trial.Target=.8, R.Indiv.Target=.8,
Seed=123, Model="Reduced")
# Fit a reduced univariate mixed-effects model without weighting to assess surrogacy:
Sur <- UnimixedContCont(Dataset=Data.Observed.MTS, Surr=Surr, True=True, Treat=Treat,
Trial.ID=Trial.ID, Pat.ID=Pat.ID, Model="Reduced", Weighted=FALSE)
# Show a summary and plots of the results:
summary(Sur)
plot(Sur, Weighted=FALSE)
## End(Not run)