| AA.MultS {Surrogate} | R Documentation | 
Compute the multiple-surrogate adjusted association
Description
The function AA.MultS computes the multiple-surrogate adjusted correlation. This is a generalisation of the adjusted association proposed by Buyse & Molenberghs (1998) (see Single.Trial.RE.AA) to the setting where there are multiple endpoints. See Details below. 
Usage
AA.MultS(Sigma_gamma, N, Alpha=0.05)
Arguments
| Sigma_gamma | The variance covariance matrix of the residuals of regression models in which the true endpoint ( | 
| N | The sample size (needed to compute a CI around the multiple adjusted association;  | 
| Alpha | The  | 
Details
The multiple-surrogate adjusted association (\gamma_M) is obtained by regressing T, S1, S2, ..., Sk on the treatment (Z):
T_{j}=\mu_{T}+\beta Z_{j}+\varepsilon_{Tj},
S1_{j}=\mu_{S1}+\alpha_{1}Z_{j}+\varepsilon_{S1j},
\ldots,
Sk_{j}=\mu_{Sk}+\alpha_{k}Z_{j}+\varepsilon_{Skj},
where the error terms have a joint zero-mean normal distribution with variance-covariance matrix:
{\boldsymbol{\Sigma}=\left(\begin{array}{cc}
\sigma_{TT} & \Sigma_{\boldsymbol{S}T}\\
\Sigma^{'}_{\boldsymbol{S}T} & \Sigma_{\boldsymbol{SS}} \\
\end{array}\right).}
The multiple adjusted association is then computed as
\gamma_M = \sqrt(\frac{\left(\Sigma^{'}_{ST} \Sigma^{-1}_{SS} \Sigma_{ST}\right)}{\sigma_{TT}})
Value
An object of class AA.MultS with components,
| Gamma.Delta | An object of class  | 
| Corr.Gamma.Delta | An object of class  | 
| Sigma_gamma | The variance covariance matrix of the residuals of regression models in which  | 
| N | The sample size (used to compute a CI around the multiple adjusted association;  | 
| Alpha | The  | 
Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
References
Buyse, M., & Molenberghs, G. (1998). The validation of surrogate endpoints in randomized experiments. Biometrics, 54, 1014-1029.
Van der Elst, W., Alonso, A. A., & Molenberghs, G. (2017). A causal inference-based approach to evaluate surrogacy using multiple surrogates.
See Also
Examples
data(ARMD.MultS)
# Regress T on Z, S1 on Z, ..., Sk on Z 
# (to compute the covariance matrix of the residuals)
Res_T <- residuals(lm(Diff52~Treat, data=ARMD.MultS))
Res_S1 <- residuals(lm(Diff4~Treat, data=ARMD.MultS))
Res_S2 <- residuals(lm(Diff12~Treat, data=ARMD.MultS))
Res_S3 <- residuals(lm(Diff24~Treat, data=ARMD.MultS))
Residuals <- cbind(Res_T, Res_S1, Res_S2, Res_S3)
# Make covariance matrix of residuals, Sigma_gamma
Sigma_gamma <- cov(Residuals)
# Conduct analysis
Result <- AA.MultS(Sigma_gamma = Sigma_gamma, N = 188, Alpha = .05)
# Explore results
summary(Result)