SL.lm {SuperLearner} | R Documentation |
Wrapper for lm
Description
Wrapper for OLS via lm(), which may be faster than glm().
Usage
SL.lm(Y, X, newX, family, obsWeights, model = TRUE, ...)
Arguments
Y |
Outcome variable |
X |
Training dataframe |
newX |
Test dataframe |
family |
Gaussian or binomial |
obsWeights |
Observation-level weights |
model |
Whether to save model.matrix of data in fit object. Set to FALSE to save memory. |
... |
Any remaining arguments, not used. |
References
Fox, J. (2015). Applied regression analysis and generalized linear models. Sage Publications.
See Also
predict.SL.lm
lm
predict.lm
SL.speedlm
Examples
data(Boston, package = "MASS")
Y = Boston$medv
# Remove outcome from covariate dataframe.
X = Boston[, -14]
set.seed(1)
sl = SuperLearner(Y, X, family = gaussian(),
SL.library = c("SL.mean", "SL.lm"))
print(sl)
[Package SuperLearner version 2.0-29 Index]