mspe_PMS_FH_SUMCA {SumcaVer1} | R Documentation |
Post model selection MSPE estimation in FH model using SUMCA method. Calculate the post-model selection mspe of Fay-Herriot model using SUMCA method.
Description
Post model selection MSPE estimation in FH model using SUMCA method. Calculate the post-model selection mspe of Fay-Herriot model using SUMCA method.
Usage
mspe_PMS_FH_SUMCA(m, p, X, beta, A, D, K, R)
Arguments
m |
number of small areas |
p |
number of fixed model parameters |
X |
covariates |
beta |
regression coefficients |
A |
variance of area-specific random effects |
D |
sampling variance |
K |
number of Monte Carlo for the SUMCA method |
R |
number of simulation runs |
Value
Par: return estimation of model parameters
MSPE.TRUE.Final: return empirical MSPE of small area predictor
mspe.Sumca.Final: return mspe of small area predictor using the SUMCA method
RB.SUMCA: return relative bias (RB) of mspe of small area predictor using the SUMCA method
Examples
mspe_PMS_FH_SUMCA(20,3,matrix(runif(60,0,1),nrow=20,byrow=TRUE),
c(1,1,1),10,2.5,10,10)
[Package SumcaVer1 version 0.1.0 Index]