mspe_LOGISTIC_HealthData_JLW {SumcaVer1}R Documentation

MSPE estimation in mixed logistic model (Health Insurance data) using jackknife method.Calculate the mspe of mixed logistic model (Health Insurance data) using jackknife method.

Description

MSPE estimation in mixed logistic model (Health Insurance data) using jackknife method.Calculate the mspe of mixed logistic model (Health Insurance data) using jackknife method.

Usage

mspe_LOGISTIC_HealthData_JLW(
  m,
  p,
  n.new,
  y.new,
  Xi,
  yi.tem,
  cum.n.new,
  county.tem,
  X.tem
)

Arguments

m

number of domains

p

number of complete model parameters

n.new

sample size of each domain

y.new

response variable

Xi

covariates for each domain

yi.tem

response variable for each individual

cum.n.new

Cummulative sum of n

county.tem

county

X.tem

Individual level covariates

Value

Par: return estimation of model parameters

Mu.hat: return prediction of domain parameters

mspe.JLW: return mspe of small area (domain) predictor using the jackknife method

sq.mspe.JLW: return square root of mspe of small area predictor for non-zero domains using the jackknife method

Examples

mspe_LOGISTIC_HealthData_JLW(20,3,c(2,1,2,2,1,2,3,1,1,3,1,3,2,3,3,
1,2,1,3,3),c(3,4,2,2,3,3,4,3,4,1,4,1,3,5,4,7,1,3,1,2),
matrix(runif(60,0,1),nrow=20,byrow=TRUE),sample(c(0,1),replace=TRUE,40),
c(2,3,5,7,8,10,13,14,15,18,19,22,24,27,30,31,33,34,37,40),rep(1:20,each=2),
matrix(c(runif(40,7,10),runif(40,14,22),runif(40,2,4)),nrow=40,byrow=FALSE))



[Package SumcaVer1 version 0.1.0 Index]