mspe_LOGISTIC_HealthData_JLW {SumcaVer1} | R Documentation |
MSPE estimation in mixed logistic model (Health Insurance data) using jackknife method.Calculate the mspe of mixed logistic model (Health Insurance data) using jackknife method.
Description
MSPE estimation in mixed logistic model (Health Insurance data) using jackknife method.Calculate the mspe of mixed logistic model (Health Insurance data) using jackknife method.
Usage
mspe_LOGISTIC_HealthData_JLW(
m,
p,
n.new,
y.new,
Xi,
yi.tem,
cum.n.new,
county.tem,
X.tem
)
Arguments
m |
number of domains |
p |
number of complete model parameters |
n.new |
sample size of each domain |
y.new |
response variable |
Xi |
covariates for each domain |
yi.tem |
response variable for each individual |
cum.n.new |
Cummulative sum of n |
county.tem |
county |
X.tem |
Individual level covariates |
Value
Par: return estimation of model parameters
Mu.hat: return prediction of domain parameters
mspe.JLW: return mspe of small area (domain) predictor using the jackknife method
sq.mspe.JLW: return square root of mspe of small area predictor for non-zero domains using the jackknife method
Examples
mspe_LOGISTIC_HealthData_JLW(20,3,c(2,1,2,2,1,2,3,1,1,3,1,3,2,3,3,
1,2,1,3,3),c(3,4,2,2,3,3,4,3,4,1,4,1,3,5,4,7,1,3,1,2),
matrix(runif(60,0,1),nrow=20,byrow=TRUE),sample(c(0,1),replace=TRUE,40),
c(2,3,5,7,8,10,13,14,15,18,19,22,24,27,30,31,33,34,37,40),rep(1:20,each=2),
matrix(c(runif(40,7,10),runif(40,14,22),runif(40,2,4)),nrow=40,byrow=FALSE))
[Package SumcaVer1 version 0.1.0 Index]