data.gen {SubgrpID} | R Documentation |
data.gen
Description
Function for simulated data generation
Usage
data.gen(
n,
k,
prevalence = sqrt(0.5),
prog.eff = 1,
sig2,
y.sig2,
rho,
rhos.bt.real,
a.constent
)
Arguments
n |
Total sample size |
k |
Number of markers |
prevalence |
prevalence of predictive biomarkers with values above the cutoff |
prog.eff |
effect size |
sig2 |
standard deviation of each marker |
y.sig2 |
Standard Deviation of the error term in the linear component |
rho |
rho*sig2 is the entries for covariance matrix between pairs of different k markers |
rhos.bt.real |
correlation between each prognostic and predictive markers |
a.constent |
a constant is set such that there is no overall treatment effect |
Details
Function for simulated data generation
Value
A list of simulated clinical trial data with heterogeneous prognostic and predictive biomarkers
Examples
n <- 500
k <- 10
prevalence <- sqrt(0.5)
rho<-0.2
sig2 <- 2
rhos.bt.real <- c(0, rep(0.1, (k-3)))*sig2
y.sig2 <- 1
prog.eff <- 0.5
effect.size <- 1
a.constent <- effect.size/(2*(1-prevalence))
ObsData <- data.gen(n=n, k=k, prevalence=prevalence, prog.eff=prog.eff,
sig2=sig2, y.sig2=y.sig2, rho=rho,
rhos.bt.real=rhos.bt.real, a.constent=a.constent)
[Package SubgrpID version 0.12 Index]