Exam5.1 {StroupGLMM} | R Documentation |
Example 5.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-163)
Description
Exam5.1 is used to show polynomial multiple regression with binomial response
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Adeela Munawar (adeela.uaf@gmail.com)
References
Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.
See Also
Examples
##---Sequential Fit of the logit Model
Exam5.1.glm.1 <-
glm(
formula = F/N~ X
, family = quasibinomial(link = "logit")
, data = DataSet5.1
, weights = NULL
# , subset
# , na.action
, start = NULL
# , etastart
# , mustart
# , offset
# , control = list(...)
# , model = TRUE
, method = "glm.fit"
# , x = FALSE
# , y = TRUE
, contrasts = NULL
# , ...
)
summary(Exam5.1.glm.1)
## confint.default() produce Wald Confidence interval as SAS produces
##---Likelihood Ratio test for Model 1
(LRExam5.1.glm.1 <-
anova(
object = Exam5.1.glm.1
, test = "Chisq")
)
library(aod)
WaldExam5.1.glm.1 <-
wald.test(
Sigma = vcov(object=Exam5.1.glm.1)
, b = coef(object=Exam5.1.glm.1)
, Terms = 2
, L = NULL
, H0 = NULL
, df = NULL
, verbose = FALSE
)
##---Sequential Fit of the logit Model quadratic terms involved
Exam5.1.glm.2 <-
glm(
formula = F/N~ X + I(X^2)
, family = quasibinomial(link = "logit")
, data = DataSet5.1
, weights = NULL
# , subset
# , na.action
, start = NULL
# , etastart
# , mustart
# , offset
# , control = list(...)
# , model = TRUE
, method = "glm.fit"
# , x = FALSE
# , y = TRUE
, contrasts = NULL
# , ...
)
summary( Exam5.1.glm.2 )
##---Likelihood Ratio test for Model Exam5.1.glm.2
(LRExam5.1.glm.2 <-
anova(
object = Exam5.1.glm.2
, test = "Chisq")
)
WaldExam5.1.glm.2 <-
wald.test(
Sigma = vcov(object=Exam5.1.glm.2)
, b = coef(object=Exam5.1.glm.2)
, Terms = 3
, L = NULL
, H0 = NULL
, df = NULL
, verbose = FALSE
)
##---Sequential Fit of the logit Model 5th power terms involved
Exam5.1.glm.3 <-
glm(
formula = F/N~ X + I(X^2) + I(X^3) + I(X^4) + I(X^5)
, family = quasibinomial(link = "logit")
, data = DataSet5.1
, weights = NULL
# , subset
# , na.action
, start = NULL
# , etastart
# , mustart
# , offset
# , control = list(...)
# , model = TRUE
, method = "glm.fit"
# , x = FALSE
# , y = TRUE
, contrasts = NULL
# , ...
)
summary(Exam5.1.glm.3)
## confint.default() produce Wald Confidence interval as SAS produces
##---Likelihood Ratio test for Model 1
(LRExam5.1.glm.3 <-
anova(
object = Exam5.1.glm.3
, test = "Chisq")
)
WaldExam5.1.glm.3 <-
wald.test(
Sigma = vcov(object=Exam5.1.glm.3)
, b = coef(object=Exam5.1.glm.3)
, Terms = 6
, L = NULL
, H0 = NULL
, df = NULL
, verbose = FALSE
)
[Package StroupGLMM version 0.1.0 Index]