Exam4.1 {StroupGLMM} | R Documentation |
Example 4.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-138)
Description
Exam4.1 REML vs ML criterion is used keeping block effects random
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Adeela Munawar (adeela.uaf@gmail.com)
References
Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.
See Also
Examples
DataSet4.1$trt <- factor(x = DataSet4.1$trt)
DataSet4.1$block <- factor(x = DataSet4.1$block)
##---REML estimates on page 138(article 4.4.3.3)
library(lme4)
Exam4.1REML <-
lmer(
formula = y~ trt +( 1|block )
, data = DataSet4.1
, REML = TRUE
# , control = lmerControl()
, start = NULL
# , verbose = 0L
# , subset
# , weights
# , na.action
# , offset
, contrasts = NULL
, devFunOnly = FALSE
# , ...
)
VarCompREML4.1 <-
VarCorr(x = Exam4.1REML
# , sigma = 1
# , ...
)
print(VarCompREML4.1, comp=c("Variance"))
##---ML estimates on page 138(article 4.4.3.3)
Exam4.1ML <-
lmer(
formula = y ~ trt + (1|block)
, data = DataSet4.1
, REML = FALSE
# , control = lmerControl()
, start = NULL
# , verbose = 0L
# , subset
# , weights
# , na.action
# , offset
, contrasts = NULL
, devFunOnly = FALSE
# , ...
)
VarCompML4.1 <-
VarCorr(x = Exam4.1ML
# , sigma = 1
# , ...
)
print(VarCompML4.1,comp=c("Variance"))
Exam4.1.lm <-
lm(
formula = y~ trt + block
, data = DataSet4.1
# , subset
# , weights
# , na.action
, method = "qr"
, model = TRUE
# , x = FALSE
# , y = FALSE
, qr = TRUE
, singular.ok = TRUE
, contrasts = NULL
# , offset
# , ...
)
summary(anova(object = Exam4.1.lm))
[Package StroupGLMM version 0.1.0 Index]