Exam3.2 {StroupGLMM} | R Documentation |
Example 3.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-73)
Description
Exam3.2 used binomial data, two treatment samples
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Adeela Munawar (adeela.uaf@gmail.com)
References
Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.
See Also
Examples
#-------------------------------------------------------------
## Linear Model and results discussed in Article 1.2.1 after Table1.1
#-------------------------------------------------------------
data(DataSet3.1)
DataSet3.1$trt <- factor(x = DataSet3.1$trt)
Exam3.2.glm <-
glm(
formula = F/N~trt
, family = quasibinomial(link = "logit")
, data = DataSet3.1
, weights = NULL
# , subset
# , na.action
, start = NULL
# , etastart
# , mustart
# , offset
# , control = list(...)
# , model = TRUE
, method = "glm.fit"
# , x = FALSE
# , y = TRUE
, contrasts = NULL
# , ...
)
summary(Exam3.2.glm)
#-------------------------------------------------------------
## Individula least squares treatment means
#-------------------------------------------------------------
library(lsmeans)
(Lsm3.2 <-
lsmeans::lsmeans(
object = Exam3.2.glm
, specs = "trt"
# , ...
)
)
OddsRatioMean3.2 <- 1/(1 + exp(-summary(Lsm3.2)[c("lsmean")] ) )
#---------------------------------------------------
## Over all mean
#---------------------------------------------------
library(phia)
list3.2<- list(trt=c("0" = 0.5,"1" = 0.5 ))
(Test3.2 <-
testFactors(
model = Exam3.2.glm
, levels = list3.2 )
)
#---------------------------------------------------
## Pairwise treatment means estimate
#---------------------------------------------------
contrast(object = Lsm3.2 , method = "pairwise")
#---------------------------------------------------
## Repairwise treatment means estimate
#---------------------------------------------------
## contrast( object = Lsm3.2 , method = "repairwise")
[Package StroupGLMM version 0.1.0 Index]