Exam2.B.7 {StroupGLMM} | R Documentation |
Example 2.B.7 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-60)
Description
Exam2.B.7 is related to multi batch regression data assuming different forms of linear models with factorial experiment.
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Adeela Munawar (adeela.uaf@gmail.com)
References
Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.
See Also
Examples
#-----------------------------------------------------------------------------------
## Classical main effects and Interaction Model
#-----------------------------------------------------------------------------------
data(DataExam2.B.7)
DataExam2.B.7$a <- factor(x = DataExam2.B.7$a)
DataExam2.B.7$b <- factor(x = DataExam2.B.7$b)
Exam2.B.7.lm1 <-
lm(
formula = y~ a + b + a*b
, data = DataExam2.B.7
# , subset
# , weights
# , na.action
, method = "qr"
, model = TRUE
# , x = FALSE
# , y = FALSE
, qr = TRUE
, singular.ok = TRUE
, contrasts = NULL
# , offset
# , ...
)
#-----------------------------------------------------------------------------------
## One way treatment effects model
#-----------------------------------------------------------------------------------
DesignMatrix.lm1 <- model.matrix (object = Exam2.B.7.lm1)
DesignMatrix2.B.7.2 <- DesignMatrix.lm1[,!colnames(DesignMatrix.lm1) %in% c("a2","b")]
lmfit2 <-
lm.fit(
x = DesignMatrix2.B.7.2
, y = DataExam2.B.7$y
, offset = NULL
, method = "qr"
, tol = 1e-07
, singular.ok = TRUE
# , ...
)
Coefficientslmfit2 <- coef( object = lmfit2)
#-----------------------------------------------------------------------------------
## One way treatment effects model without intercept
#-----------------------------------------------------------------------------------
DesignMatrix2.B.7.3 <-
as.matrix(DesignMatrix.lm1[,!colnames(DesignMatrix.lm1) %in% c("(Intercept)","a2","b")])
lmfit3 <-
lm.fit(
x = DesignMatrix2.B.7.3
, y = DataExam2.B.7$y
, offset = NULL
, method = "qr"
, tol = 1e-07
, singular.ok = TRUE
# , ...
)
Coefficientslmfit3 <- coef( object = lmfit3)
#-----------------------------------------------------------------------------------
## Nested Model (both models give the same result)
#-----------------------------------------------------------------------------------
Exam2.B.7.lm4 <-
lm(
formula = y~ a + a/b
, data = DataExam2.B.7
# , subset
# , weights
# , na.action
, method = "qr"
, model = TRUE
# , x = FALSE
# , y = FALSE
, qr = TRUE
, singular.ok = TRUE
, contrasts = NULL
# , offset
# , ...
)
summary(Exam2.B.7.lm4)
Exam2.B.7.lm4 <-
lm(
formula = y~ a + a*b
, data = DataExam2.B.7
# , subset
# , weights
# , na.action
, method = "qr"
, model = TRUE
# , x = FALSE
# , y = FALSE
, qr = TRUE
, singular.ok = TRUE
, contrasts = NULL
# , offset
# , ...
)
summary(Exam2.B.7.lm4)
[Package StroupGLMM version 0.1.0 Index]