Exam2.B.6 {StroupGLMM} | R Documentation |
Example 2.B.6 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-58)
Description
Exam2.B.6 is related to multi batch regression data assuming different forms of linear models keeping batch effect random.
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Adeela Munawar (adeela.uaf@gmail.com)
References
Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.
See Also
Examples
#-----------------------------------------------------------------------------------
## Nested Model with no intercept
#-----------------------------------------------------------------------------------
data(Table1.2)
library(nlme)
Table1.2$Batch <- factor(x = Table1.2$Batch)
Exam2.B.6fm1 <-
lme(
fixed = Y~X
, data = Table1.2
, random = list(Batch = pdDiag(~1), X = pdDiag(~1))
, correlation = NULL
, weights = NULL
# , subset
, method = "REML" #c("REML", "ML")
, na.action = na.fail
# , control = list()
, contrasts = NULL
, keep.data = TRUE
)
[Package StroupGLMM version 0.1.0 Index]