estSSR {StressStrength}R Documentation

Sample estimation of reliability of stress-strength models

Description

The function provides sample estimates of reliability of stress-strength models, where stress and strength are modeled as independent r.v., whose distribution form is known except for the values of its parameters, assumed all unknown

Usage

estSSR(x, y, family="normal", twoside=TRUE, type="RG", alpha=0.05, B=2000)

Arguments

x

a random sample from r.v. X modeling strength

y

a random sample from r.v. Y modeling stress

family

the distribution of both X and Y

twoside

if TRUE, the function computes two-side confidence intervals; otherwise, one-side (a lower bound)

type

type of confidence interval (CI) to be built. For the normal family, "RG" stands for Reiser-Guttman, "AN" for large sample (asymptotically normal), "LOGIT" or "ARCSIN" for logit or arcsin variance stabilizing tranformations, "B" for percentile bootstrap, "GK" for Guo-Krishnamoorthy (one-sided only).

alpha

the complement to one of the nominal confidence level

B

number of bootstrap replicates (for type "B")

Details

For more details, please have a look at the references listed below

Value

A list comprising

ML_est

the sample value of the maximum likelihood estimator; for normal r.v. \hat{R}=\Phi[(\bar{x}-\bar{y})/\sqrt{\hat{\sigma}_x^2+\hat{\sigma}_y^2}], where \bar{x} and \bar{y} are the sample means, and \hat{\sigma}_x^2, \hat{\sigma}_y^2 the biased maximum likelihood variance estimators

Downton_est

(for normal r.v.) the sample value of one of the approximated UMVU estimators proposed by Downton \hat{R}'=\Phi[(\bar{x}-\bar{y})/\sqrt{s_x^2+s_y^2}]

CI

the confidence interval

confidence_level

the nominal confidence level 1-\alpha

Author(s)

Alessandro Barbiero, Riccardo Inchingolo

References

Barbiero A (2011) Confidence Intervals for Reliability of Stress-Strength Models in the Normal Case, Comm Stat Sim Comp 40(6):907-925

Downton F. (1973) The Estimation of Pr (Y < X) in the Normal Case, Technometrics , 15(3):551-558

Kotz S, Lumelskii Y, Pensky M (2003) The stress-strength model and its generalizations: theory and applications. World Scientific, Singapore

Guo H, Krishnamoorthy K (2004) New approximate inferential methods for the reliability parameter in a stress-strength model: The normal case. Commun Stat Theory Methods 33:1715-1731

Mukherjee SP, Maiti SS (1998) Stress-strength reliability in the Weibull case. Frontiers In Reliability 4:231-248. WorldScientific, Singapore

Reiser BJ, Guttman I (1986) Statistical inference for P(Y<X): The normal case. Technometrics 28:253-257

See Also

SSR

Examples

# distributional parameters of X and Y
parx<-c(1, 1)
pary<-c(0, 2)
# sample sizes
n<-10
m<-20
# true value of R
SSR(parx,pary)
# draw independent random samples from X and Y
x<-rnorm(n, parx[1], parx[2])
y<-rnorm(m, pary[1], pary[2])
# build two-sided confidence intervals
estSSR(x, y, type="RG")
estSSR(x, y, type="AN")
estSSR(x, y, type="LOGIT")
estSSR(x, y, type="ARCSIN")
estSSR(x, y, type="B")
estSSR(x, y, type="B",B=1000) # change number of bootstrap replicates
# and one-sided
estSSR(x, y, type="RG", twoside=FALSE)
estSSR(x, y, type="AN", twoside=FALSE)
estSSR(x, y, type="LOGIT", twoside=FALSE)
estSSR(x, y, type="ARCSIN", twoside=FALSE)
estSSR(x, y, type="B", twoside=FALSE)
estSSR(x, y, type="GK", twoside=FALSE)
# changing sample sizes
n<-20
m<-30
x<-rnorm(n, parx[1], parx[2])
y<-rnorm(m, pary[1], pary[2])
# build tow-sided confidence intervals
estSSR(x, y, type="RG")
estSSR(x, y, type="AN")
estSSR(x, y, type="LOGIT")
estSSR(x, y, type="ARCSIN")
estSSR(x, y, type="B")

[Package StressStrength version 1.0.2 Index]