prior.norm.B {StepSignalMargiLike} | R Documentation |
prior.norm.B
Description
This function computes the Norm-B prior proposed in Du, Kao
and Kou (2015), which is used under conjugate normal
assumption. The variance \sigma^2
is assumed to be
drawn from an inverse Gamma distribution with shape
parameter \nu0
and scale parameter \sigma0^2
,
while mean is assumed to be drawn from a normal
distribution with mean \mu0
and variance
\sigma^2/\kappa0
.
Usage
prior.norm.B(data.x)
Arguments
data.x |
Observed data in vector form where each element represents a single observation. |
Details
See Manual.pdf in "data" folder.
Value
Vector for prior parameters in the order of (\mu0,
\kappa0, \nu0, \sigma0^2
)
References
Chao Du, Chu-Lan Michael Kao and S. C. Kou (2015), "Stepwise Signal Extraction via Marginal Likelihood". Forthcoming in Journal of American Statistical Association.
Examples
library(StepSignalMargiLike)
n <- 5
data.x <- rnorm(n, 1, 1)
data.x <- c(data.x, rnorm(n, 10,1))
data.x <- c(data.x, rnorm(n, 2,1))
data.x <- c(data.x, rnorm(n, 10,1))
data.x <- c(data.x, rnorm(n, 1,1))
prior.norm.B(data.x)
[Package StepSignalMargiLike version 2.6.0 Index]