est.mean.norm {StepSignalMargiLike} | R Documentation |
est.mean.norm
Description
This function estimates the posterior mean for each
segments under the normal assumption with conjugate prior.
The variance \sigma^2
is assumed to be drawn from an
inverse Gamma distribution with shape parameter \nu0
and scale parameter \sigma0^2
, while mean is assumed
to be drawn from a normal distribution with mean \mu0
and variance \sigma^2/\kappa0
.
Usage
est.mean.norm(data.x, index.ChPT, prior)
Arguments
data.x |
Observed data in vector form where each element represents a single observation. |
index.ChPT |
The set of the index of change points
in a vector. Must be in accending order. This could be
obtained by |
prior |
Vector contatining prior parameters in the
order of ( |
Details
See Manual.pdf in "data" folder.
Value
Vector containing estimated mean for each segments.
References
Chao Du, Chu-Lan Michael Kao and S. C. Kou (2015), "Stepwise Signal Extraction via Marginal Likelihood". Forthcoming in Journal of American Statistical Association.
Examples
library(StepSignalMargiLike)
n <- 5
data.x <- rnorm(n, 1, 1)
data.x <- c(data.x, rnorm(n, 10,1))
data.x <- c(data.x, rnorm(n, 2,1))
data.x <- c(data.x, rnorm(n, 10,1))
data.x <- c(data.x, rnorm(n, 1,1))
prior <- prior.norm.A(data.x)
index.ChPT <- c(n,2*n,3*n,4*n)
est.mean.norm(data.x, index.ChPT, prior)