est.mean.norm {StepSignalMargiLike} | R Documentation |
est.mean.norm
Description
This function estimates the posterior mean for each
segments under the normal assumption with conjugate prior.
The variance is assumed to be drawn from an
inverse Gamma distribution with shape parameter
and scale parameter
, while mean is assumed
to be drawn from a normal distribution with mean
and variance
.
Usage
est.mean.norm(data.x, index.ChPT, prior)
Arguments
data.x |
Observed data in vector form where each element represents a single observation. |
index.ChPT |
The set of the index of change points
in a vector. Must be in accending order. This could be
obtained by |
prior |
Vector contatining prior parameters in the
order of ( |
Details
See Manual.pdf in "data" folder.
Value
Vector containing estimated mean for each segments.
References
Chao Du, Chu-Lan Michael Kao and S. C. Kou (2015), "Stepwise Signal Extraction via Marginal Likelihood". Forthcoming in Journal of American Statistical Association.
Examples
library(StepSignalMargiLike)
n <- 5
data.x <- rnorm(n, 1, 1)
data.x <- c(data.x, rnorm(n, 10,1))
data.x <- c(data.x, rnorm(n, 2,1))
data.x <- c(data.x, rnorm(n, 10,1))
data.x <- c(data.x, rnorm(n, 1,1))
prior <- prior.norm.A(data.x)
index.ChPT <- c(n,2*n,3*n,4*n)
est.mean.norm(data.x, index.ChPT, prior)