| ComputeBest_t {StableEstim} | R Documentation | 
Monte Carlo simulation to investigate the optimal number of points to use in the moment conditions
Description
Runs Monte Carlo simulation for different values of \alpha and
\beta and computes a specified number of t-points that minimises
the determinant of the asymptotic covariance matrix.
Usage
ComputeBest_t(AlphaBetaMatrix = abMat, nb_ts = seq(10, 100, 10),
              alphaReg = 0.001, FastOptim = TRUE, ...)
Arguments
AlphaBetaMatrix | 
 values of the parameter   | 
nb_ts | 
 vector of numbers of t-points to use for the minimisation;
default =   | 
alphaReg | 
 value of the regularisation parameter; numeric, default = 0.001.  | 
FastOptim | 
 Logical flag; if set to TRUE,   | 
... | 
 Other arguments to pass to the optimisation function.  | 
Value
a list containing slots from class Best_t-class
corresponding to one value of the parameters \alpha and
\beta.