ComputeBest_t {StableEstim} | R Documentation |
Monte Carlo simulation to investigate the optimal number of points to use in the moment conditions
Description
Runs Monte Carlo simulation for different values of \alpha
and
\beta
and computes a specified number of t-points that minimises
the determinant of the asymptotic covariance matrix.
Usage
ComputeBest_t(AlphaBetaMatrix = abMat, nb_ts = seq(10, 100, 10),
alphaReg = 0.001, FastOptim = TRUE, ...)
Arguments
AlphaBetaMatrix |
values of the parameter |
nb_ts |
vector of numbers of t-points to use for the minimisation;
default = |
alphaReg |
value of the regularisation parameter; numeric, default = 0.001. |
FastOptim |
Logical flag; if set to TRUE, |
... |
Other arguments to pass to the optimisation function. |
Value
a list
containing slots from class Best_t-class
corresponding to one value of the parameters \alpha
and
\beta
.