| CgmmParametersEstim {StableEstim} | R Documentation | 
Estimate parameters of stable laws using a Cgmm method
Description
Estimate the four parameters of stable laws using generalised method of moments based on a continuum of complex moment conditions (Cgmm) due to Carrasco and Florens. Those moments are computed by matching the characteristic function with its sample counterpart. The resulting (ill-posed) estimation problem is solved by a regularisation technique.
Usage
CgmmParametersEstim(x, type = c("2S", "IT", "Cue"), alphaReg = 0.01,
                    subdivisions = 50,
                    IntegrationMethod = c("Uniform", "Simpson"),
                    randomIntegrationLaw = c("unif", "norm"),
                    s_min = 0, s_max = 1,
                    theta0 = NULL,
                    IterationControl = list(),
                    pm = 0, PrintTime = FALSE,...)
Arguments
x | 
 Data used to perform the estimation: a vector of length n.  | 
type | 
 Cgmm algorithm:   | 
alphaReg | 
 Value of the regularisation parameter; numeric, default = 0.01.  | 
subdivisions | 
 Number of subdivisions used to compute the different integrals involved in the computation of the objective function (to minimise); numeric.  | 
IntegrationMethod | 
 Numerical integration method to be used to approximate the
(vectorial) integrals. Users can choose between   | 
randomIntegrationLaw | 
 Probability measure associated to the Hilbert space spanned by the moment conditions. See Carrasco and Florens (2003) for more details.  | 
s_min, s_max | 
 Lower and Upper bounds of the interval where the moment conditions are considered; numeric.  | 
theta0 | 
 Initial guess for the 4 parameters values: vector of length 4.  | 
IterationControl | 
 Only used with   | 
pm | 
 Parametrisation, an integer (0 or 1); default:   | 
PrintTime | 
 Logical flag; if set to TRUE, the estimation duration is printed out to the screen in a readable format (h/min/sec).  | 
... | 
 Other arguments to be passed to the optimisation function and/or to the integration function.  | 
Details
The moment conditions The moment conditions are given by:
g_t(X,\theta)=g(t,X;\theta)= e^{itX} - \phi_{\theta}(t)
If one has a sample x_1,\dots,x_n of i.i.d realisations of the
same random variable X, then: 
\hat{g}_n(t,\theta)  = \frac{1}{n}\sum_{i=1}^n g(t,x_i;\theta) =  \phi_n(t) -\phi_\theta(t),
where \phi_n(t) is the eCF associated with the sample
x_1,\dots,x_n, defined by \phi_n(t)= \frac{1}{n}
    \sum_{j=1}^n e^{itX_j}.
Objective function
Following Carrasco et al. (2007, Proposition 3.4), the objective function to minimise is given by:
obj(\theta)=\overline{\underline{v}^{\prime}}(\theta)[\alpha_{Reg} \mathcal{I}_n+C^2]^{-1}\underline{v}(\theta)
where:
- 
\underline{v} = [v_1,\ldots,v_n]^{\prime}; v_i(\theta) = \int_I \overline{g_i}(t;\hat{\theta}^1_n) \hat{g}(t;\theta) \pi(t) dt.I_nis the identity matrix of size
n.Cis a
n \times nmatrix with(i,j)th element given byc_{ij} = \frac{1}{n-4}\int_I \overline{g_i}(t;\hat{\theta}^1_n) g_j(t;\hat{\theta}^1_n) \pi(t) dt.
To compute C and v_i() we will use the function
IntegrateRandomVectorsProduct.
The IterationControl
If type = "IT" or type = "Cue", the user can control
each iteration using argument IterationControl, which should be
a list which contains the following elements:
NbIter:maximum number of iterations. The loop stops when
NBIteris reached; default = 10.PrintIterlogical:if set to TRUE the values of the current parameter estimates are printed to the screen at each iteration; default = TRUE.
RelativeErrMax:the loop stops if the relative error between two consecutive estimation steps is smaller then
RelativeErrMax; default = 1e-3.
Value
a list with the following elements:
Estim | 
 output of the optimisation function,  | 
duration | 
 estimation duration in numerical format,  | 
method | 
 
  | 
Note
nlminb as used to minimise the Cgmm objective function.
References
Carrasco M, Florens J (2000). “Generalization of GMM to a continuum of moment conditions.” Econometric Theory, 16(06), 797–834.
Carrasco M, Florens J (2002). “Efficient GMM estimation using the empirical characteristic function.” IDEI Working Paper, 140.
Carrasco M, Florens J (2003). “On the asymptotic efficiency of GMM.” IDEI Working Paper, 173.
Carrasco M, Chernov M, Florens J, Ghysels E (2007). “Efficient estimation of general dynamic models with a continuum of moment conditions.” Journal of Econometrics, 140(2), 529–573.
Carrasco M, Kotchoni R (2010). “Efficient estimation using the characteristic function.” Mimeo. University of Montreal.
See Also
Estim,
GMMParametersEstim,
IntegrateRandomVectorsProduct
Examples
## general inputs
theta <- c(1.45, 0.55, 1, 0)
pm <- 0
set.seed(2345)
x <- rstable(50, theta[1], theta[2], theta[3], theta[4], pm)
## GMM specific params
alphaReg <- 0.01
subdivisions <- 20
randomIntegrationLaw <- "unif"
IntegrationMethod <- "Uniform"
## Estimation
twoS <- CgmmParametersEstim(x = x, type = "2S", alphaReg = alphaReg, 
                          subdivisions = subdivisions, 
                          IntegrationMethod = IntegrationMethod, 
                          randomIntegrationLaw = randomIntegrationLaw, 
                          s_min = 0, s_max = 1, theta0 = NULL, 
                          pm = pm, PrintTime = TRUE)
twoS