cv.SplitGLM {SplitGLM} | R Documentation |
Cross Validation - Split Generalized Linear Model
Description
cv.SplitGLM
performs the CV procedure for split generalized linear models.
Usage
cv.SplitGLM(
x,
y,
glm_type = "Linear",
G = 10,
include_intercept = TRUE,
alpha_s = 3/4,
alpha_d = 1,
n_lambda_sparsity = 50,
n_lambda_diversity = 50,
tolerance = 0.001,
max_iter = 1e+05,
n_folds = 10,
active_set = FALSE,
full_diversity = FALSE,
n_threads = 1
)
Arguments
x |
Design matrix. |
y |
Response vector. |
glm_type |
Description of the error distribution and link function to be used for the model. Must be one of "Linear", "Logistic", "Gamma" or "Poisson". |
G |
Number of groups into which the variables are split. Can have more than one value. |
include_intercept |
Boolean variable to determine if there is intercept (default is TRUE) or not. |
alpha_s |
Elastic net mixing parmeter. Default is 3/4. |
alpha_d |
Mixing parameter for diversity penalty. Default is 1. |
n_lambda_sparsity |
Number of candidates for the sparsity penalty parameter. Default is 100. |
n_lambda_diversity |
Number of candidates for the sparsity penalty parameter. Default is 100. |
tolerance |
Convergence criteria for the coefficients. Default is 1e-3. |
max_iter |
Maximum number of iterations in the algorithm. Default is 1e5. |
n_folds |
Number of cross-validation folds. Default is 10. |
active_set |
Active set convergence for the algorithm. Default is FALSE. |
full_diversity |
Full diversity between the groups. Default is FALSE. |
n_threads |
Number of threads. Default is 1. |
Value
An object of class cv.SplitGLM.
Author(s)
Anthony-Alexander Christidis, anthony.christidis@stat.ubc.ca
See Also
coef.cv.SplitGLM
, predict.cv.SplitGLM
Examples
# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 1000
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 100
beta <- c(beta.active[1:p.active], rep(0, p-p.active))
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- 0.5
diag(Sigma) <- 1
# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma)
prob.train <- exp(x.train %*% beta)/
(1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)
mean(y.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/
(1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)
mean(y.test)
# SplitGLM - CV (Multiple Groups)
split.out <- cv.SplitGLM(x.train, y.train,
glm_type="Logistic",
G=10, include_intercept=TRUE,
alpha_s=3/4, alpha_d=1,
n_lambda_sparsity=50, n_lambda_diversity=50,
tolerance=1e-3, max_iter=1e3,
n_folds=5,
active_set=FALSE,
n_threads=1)
split.coef <- coef(split.out)
# Predictions
split.prob <- predict(split.out, newx=x.test, type="prob", group_index=NULL)
split.class <- predict(split.out, newx=x.test, type="class", group_index=NULL)
plot(prob.test, split.prob, pch=20)
abline(h=0.5,v=0.5)
mean((prob.test-split.prob)^2)
mean(abs(y.test-split.class))