integrate_similarity_matrices {Spectrum} | R Documentation |
integrate_similarity_matrices: integrate similarity matrices using a tensor product graph linear combination and diffusion technique
Description
Given a list of similarity matrices this function will integrate them running the Shu algorithm, also can reduce noise if the input is a list consisting of a single matrix.
Usage
integrate_similarity_matrices(kernellist, KNNs_p = 10,
diffusion_iters = 4, method = "TPG")
Arguments
kernellist |
A list of similarity matrices: those to be integrated |
KNNs_p |
Numerical value: number of nearest neighbours for KNN graph (default=10, suggested=10-20) |
diffusion_iters |
Numerical value: number of iterations for graph diffusion (default=4, suggested=2-6) |
method |
Character: either TPG (see reference below) or mean (default=TPG) |
Value
An integrated similarity matrix
References
Shu, Le, and Longin Jan Latecki. "Integration of single-view graphs with diffusion of tensor product graphs for multi-view spectral clustering." Asian Conference on Machine Learning. 2016.
Examples
i_test <- integrate_similarity_matrices(misslfilled,method='mean')
[Package Spectrum version 1.1 Index]