SpectralMap {SpectralMap} | R Documentation |
Diffusion Map and Spectral Map
Description
Implements the diffusion map method of dimensionality reduction and spectral method of combining multiple diffusion maps, including creation of the spectra and visualization of maps.
Usage
SpectralMap(data, epsilon=0.1, range=1, Plot2D=FALSE, Plot3D=FALSE)
Arguments
data |
a list of datasets and each column in each dataset is a variable |
epsilon |
parameter in the Gaussian kernel |
range |
indexes of the datasets in the data list to be combined and computed. If length(range)==1, only diffusion map will be computed. Otherwise, spectral map will be computed |
Plot2D |
a logical value indicating whether a 2-D map should be plotted |
Plot3D |
a logical value indicating whether a 3-D map should be plotted |
Value
singularvector |
the spectra of either diffusion map or spectral map |
Examples
#generate two datasets
n <- 100
theta <- 2*pi*seq(from=0, to=1-1/n, by=1/n)
r = (1 + cos(6*theta)/4)
# X is a circle
X1 = cos(theta)
X2 = sin(theta)
X<-data.frame(X1,X2)
#Y is a hexagon
Y1 = r*cos(theta)
Y2 = r*sin(theta)
Y<-data.frame(Y1,Y2)
#create data list
Data<-list(X,Y)
#create the diffusion map of X
example1<-SpectralMap(Data, epsilon=0.1, range=1, Plot2D=TRUE, Plot3D=FALSE)
#create the spectral map from X to Y
example2<-SpectralMap(Data, epsilon=0.1, range=1:2, Plot2D=TRUE, Plot3D=FALSE)
[Package SpectralMap version 1.0 Index]