SpatialVS {SpatialVS} | R Documentation |
Function for spatial variable selection
Description
Perform variable selection for the spatial Poisson regression model under adaptive elastic net penalty.
Usage
SpatialVS(dat.obj, alpha.vec = seq(0.6, 1, by = 0.05),
lambda.vec = seq(0.15, 1, len = 50), method = "PQL", plots = F,
intercept = T, verbose = T)
Arguments
dat.obj |
List, input data. Must contains:
|
alpha.vec |
numeric vector, a vector of possible values of regularization parameter. The range is [0,1]. |
lambda.vec |
numeric vector, a vector of positive values of regularization parameter. |
method |
string, the method to be used. Options are:
|
plots |
bool, if |
intercept |
bool, if |
verbose |
bool, if |
Value
A list of 13 items:
-
dat.obj
, List, a copy of thedat.obj
input. -
start
, Initial values of parameters given by glmmPQL(). -
L.obj
, Regression coefficients under eachalpha.vec
andlambda.vec
, under the adaptive elastic net. -
Lout.obj
, AIC and BIC values under eachL.obj value
, under the adaptive elastic net. -
contour.out.obj
, Object used to generate contour plot as a function ofalpha.vec
andlambda.vec
, with AIC or BIC as the output. Used to choose best penalty parameter, under the adaptive elastic net. -
L.best.obj
, Model fitting results under the best chosenalpha.vec
andlambda.vec
, under the adaptive elastic net. -
Lout.best.obj
, Best BIC value forL.best.obj
. -
L.EN.obj, Lout.EN.obj, contour.out.EN.obj, L.EN.best.obj
, Similar items but under the elastic penalty. -
lasso.weight
, Numeric, specifies the adaptive Lasso weight. -
method
, String, the method used for computing the approximate likelihood function.
References
Xie, Y., Xu, L., Li, J., Deng, X., Hong, Y., Kolivras, K., and Gaines, D. N. (2018). Spatial Variable Selection and An Application to Virginia Lyme Disease Emergence. Preprint, arXiv:1809.06418 [stat.AP].
Examples
#use small.test.dat as the input to fit the spatial Poisson regression model.
#a grid of alpha.vec and lambda.vec is typically used.
#Here one point of alpha.vec and lambda.vec is used for fast illustration.
test.fit<-SpatialVS(dat.obj=small.test.dat, alpha.vec=0.5,
lambda.vec=5, method="PQL", intercept=TRUE, verbose=FALSE)