symm.mvtmle {SpatialNP} | R Documentation |
Symmetrized M-estimators of scatter with the weights of the t-distribution
Description
Iterative algorithms to estimate symmetrized M-estimators of scatter using weights of the t-distribution.
Usage
symm.mvtmle(X, nu=1, init=NULL, steps=Inf, eps=1e-6,
maxiter=100, na.action = na.fail)
symm.mvtmle.inc(X, nu=1, m=10, init=NULL, steps=Inf, permute=TRUE,
eps=1e-6, maxiter=100, na.action = na.fail)
Arguments
X |
a matrix or a data frame |
nu |
the degrees of freedom of the t-distribution. The default is 1. Must be larger than 0. |
init |
an optional starting value for scatter |
steps |
fixed number of iteration steps to take, if |
m |
a parameter in |
permute |
logical in |
eps |
tolerance for convergence |
maxiter |
maximum number of iteration steps. Ignored if |
na.action |
a function which indicates what should happen when the data contain 'NA's. Default is to fail. |
Details
symm.mvtmle
computes M-estimator of scatter using weights of the t-distribution and pairwise
differences of the data. Hence, location estimation is not needed.
symm.mvtmle.inc
is a computationally lighter estimator to approximate symmetrized M-estimator of scatter which uses weights of the t-distribution.
Only a subset of the pairwise differences are used in the computation in the incomplete case. The magnitude of the subset used is controlled
by the argument m
which is half of the number of how many differences each observation is part of. Differences of successive observations are used,
and therefore random permutation of the rows of X
is suggested and is the default choice in the function. For details see Miettinen et al., 2016.
Value
symm.mvtmle
returns a matrix.
symm.mvtmle.inc
returns a matrix.
Author(s)
Jari Miettinen, jari.p.miettinen@aalto.fi,
Klaus Nordhausen, klaus.nordhausen@tuwien.ac.at
References
Huber, P.J. (1981), Robust Statistics, Wiley, New York.
Sirkia, S., Taskinen, S., Oja, H. (2007) Symmetrised M-estimators of scatter. Journal of Multivariate Analysis, 98, 1611-1629.
Duembgen, L., Pauly, M., Schweizer, T. (2015) M-Functionals of multivariate scatter. Statistics Surveys 9, 32-105.
Miettinen, J., Nordhausen, K., Taskinen, S., Tyler, D.E. (2016) On the computation of symmetrized M-estimators of scatter. In Agostinelli, C. Basu, A., Filzmoser, P. and Mukherje, D. (editors) ”Recent Advances in Robust Statistics: Theory and Application”, 131-149, Springer India, New Delhi.
Examples
A<-matrix(c(1,2,-3,4,3,-2,-1,0,4),ncol=3)
X<-matrix(rnorm(1500),ncol=3)%*%t(A)
symm.mvtmle(X, nu=2)
symm.mvtmle.inc(X, nu=2, m=20)