topGradientsCellType {SpatialDDLS} | R Documentation |
Get top genes with largest/smallest gradients per cell type
Description
Retrieve feature names with the largest/smallest gradients per cell
type. These genes can be used to visualize their spatial expression
in the ST data (plotGeneSpatial
function) or to plot the calculated
gradients as a heatmap (plotGradHeatmap
function).
Usage
topGradientsCellType(object, method = "class", top.n.genes = 15)
Arguments
object |
|
method |
Method gradients were calculated by. It can be either
|
top.n.genes |
Top n genes (positive and negative) taken per cell type. |
Value
List of gene names with the top positive and negative gradients per cell type.
See Also
interGradientsDL
trainDeconvModel
Examples
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(
assays = list(
counts = matrix(
rpois(30, lambda = 5), nrow = 15, ncol = 10,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10)))
)
),
colData = data.frame(
Cell_ID = paste0("RHC", seq(10)),
Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,
replace = TRUE)
),
rowData = data.frame(
Gene_ID = paste0("Gene", seq(15))
)
)
SDDLS <- createSpatialDDLSobject(
sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE
)
SDDLS <- genMixedCellProp(
object = SDDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
num.sim.spots = 50,
train.freq.cells = 2/3,
train.freq.spots = 2/3,
verbose = TRUE
)
SDDLS <- simMixedProfiles(SDDLS)
SDDLS <- trainDeconvModel(
object = SDDLS,
batch.size = 12,
num.epochs = 5
)
## calculating gradients
SDDLS <- interGradientsDL(SDDLS)
listGradients <- topGradientsCellType(SDDLS)
lapply(listGradients, head, n = 5)
[Package SpatialDDLS version 1.0.2 Index]