loadSTProfiles {SpatialDDLS} | R Documentation |
Loads spatial transcriptomics data into a SpatialDDLS object
Description
This function loads a SpatialExperiment
object (or a
list with several SpatialExperiment
objects) into a
SpatialDDLS
object.
Usage
loadSTProfiles(
object,
st.data,
st.spot.ID.column,
st.gene.ID.column,
st.min.counts = 0,
st.min.spots = 0,
st.n.slides = 3,
verbose = TRUE
)
Arguments
object |
A |
st.data |
A |
st.spot.ID.column |
Name or number of the column in spots metadata corresponding to spot names in the expression matrix. |
st.gene.ID.column |
Name or number of the column in genes metadata corresponding to names used for features/genes. |
st.min.counts |
Minimum gene counts to filter (0 by default). |
st.min.spots |
Minimum of spots with more than |
st.n.slides |
Minimum number of slides
( |
verbose |
Show informative messages during execution ( |
Details
It is recommended to perform this step when creating the
SpatialDDLS
object using the
createSpatialDDLSobject
function in order to only keep genes
shared between the spatial transcriptomics and the single-cell
transcriptomics data used as reference. In addition, please, make sure the
gene identifiers used the spatial and single-cell transcriptomics data are
consistent.
Value
A SpatialDDLS
object with the provided spatial
trainscriptomics data loaded into the spatial.experiments
slot.
See Also
createSpatialDDLSobject
trainDeconvModel
Examples
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(
assays = list(
counts = matrix(
rpois(100, lambda = 5), nrow = 40, ncol = 30,
dimnames = list(paste0("Gene", seq(40)), paste0("RHC", seq(30)))
)
),
colData = data.frame(
Cell_ID = paste0("RHC", seq(30)),
Cell_Type = sample(x = paste0("CellType", seq(4)), size = 30,
replace = TRUE)
),
rowData = data.frame(
Gene_ID = paste0("Gene", seq(40))
)
)
SDDLS <- createSpatialDDLSobject(
sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE
)
## simulating a SpatialExperiment object
counts <- matrix(rpois(30, lambda = 5), ncol = 6)
rownames(counts) <- paste0("Gene", 1:5)
colnames(counts) <- paste0("Spot", 1:6)
coordinates <- matrix(
c(1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3), ncol = 2
)
ste <- SpatialExperiment::SpatialExperiment(
assays = list(counts = as.matrix(counts)),
rowData = data.frame(Gene_ID = paste0("Gene", 1:5)),
colData = data.frame(Cell_ID = paste0("Spot", 1:6)),
spatialCoords = coordinates
)
## previous SpatialDDLS object
SDDLS <- loadSTProfiles(
object = SDDLS,
st.data = ste,
st.spot.ID.column = "Cell_ID",
st.gene.ID.column = "Gene_ID"
)