distErrorPlot {SpatialDDLS} | R Documentation |
Generate box or violin plots showing error distribution
Description
Generate box or violin plots to show how errors are distributed. Errors can
be shown all mixed or either split by cell type (CellType
) or number
of cell types present in the spots (nCellTypes
). See the
facet.by
argument and examples for more details.
Usage
distErrorPlot(
object,
error,
colors,
x.by = "pBin",
facet.by = NULL,
color.by = "nCellTypes",
filter.sc = TRUE,
error.label = FALSE,
pos.x.label = 4.6,
pos.y.label = NULL,
size.point = 0.1,
alpha.point = 1,
type = "violinplot",
ylimit = NULL,
nrow = NULL,
ncol = NULL,
title = NULL,
theme = NULL,
...
)
Arguments
object |
|
error |
Error to be represented. Available metric errors are: absolute
error ( |
colors |
Vector of colors to be used. |
x.by |
Variable used for the X-axis. When |
facet.by |
Show data in different panels. Options are |
color.by |
Variable used to color data. Options are |
filter.sc |
Boolean indicating whether single-cell profiles are filtered
out and only mixed transcriptional profile errors are shown ( |
error.label |
Boolean indicating whether to show the average error as a
plot annotation ( |
pos.x.label |
X-axis position of error annotations. |
pos.y.label |
Y-axis position of error annotations. |
size.point |
Size of points (0.1 by default). |
alpha.point |
Alpha of points (0.1 by default). |
type |
Type of plot: |
ylimit |
Upper limit in Y-axis if it is required ( |
nrow |
Number of rows if |
ncol |
Number of columns if |
title |
Title of the plot. |
theme |
ggplot2 theme. |
... |
Additional arguments for the facet_wrap function
of ggplot2 if |
Value
A ggplot object.
See Also
calculateEvalMetrics
corrExpPredPlot
blandAltmanLehPlot
barErrorPlot
Examples
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(
assays = list(
counts = matrix(
rpois(30, lambda = 5), nrow = 15, ncol = 20,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))
)
),
colData = data.frame(
Cell_ID = paste0("RHC", seq(20)),
Cell_Type = sample(
x = paste0("CellType", seq(6)), size = 20, replace = TRUE
)
),
rowData = data.frame(
Gene_ID = paste0("Gene", seq(15))
)
)
SDDLS <- createSpatialDDLSobject(
sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE
)
SDDLS <- genMixedCellProp(
object = SDDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
num.sim.spots = 50,
train.freq.cells = 2/3,
train.freq.spots = 2/3,
verbose = TRUE
)
SDDLS <- simMixedProfiles(SDDLS)
# training of DDLS model
SDDLS <- trainDeconvModel(
object = SDDLS,
batch.size = 15,
num.epochs = 5
)
# evaluation using test data
SDDLS <- calculateEvalMetrics(object = SDDLS)
# representation, for more examples, see the vignettes
distErrorPlot(
object = SDDLS,
error = "AbsErr",
facet.by = "CellType",
color.by = "nCellTypes",
error.label = TRUE
)
distErrorPlot(
object = SDDLS,
error = "AbsErr",
x.by = "CellType",
facet.by = NULL,
color.by = "CellType",
error.label = TRUE
)