barErrorPlot {SpatialDDLS} | R Documentation |
Generate bar error plots
Description
Generate bar error plots by cell type (CellType
) or by number of
different cell types (nCellTypes
) on test mixed transcriptional
profiles.
Usage
barErrorPlot(
object,
error = "MSE",
by = "CellType",
dispersion = "se",
filter.sc = TRUE,
title = NULL,
angle = NULL,
theme = NULL
)
Arguments
object |
|
error |
|
by |
Variable used to show errors. Available options are:
|
dispersion |
Standard error ( |
filter.sc |
Boolean indicating whether single-cell profiles are filtered
out and only correlation of results associated with mixed transcriptional
profiles are shown ( |
title |
Title of the plot. |
angle |
Angle of ticks. |
theme |
ggplot2 theme. |
Value
A ggplot object.
See Also
calculateEvalMetrics
corrExpPredPlot
distErrorPlot
blandAltmanLehPlot
Examples
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(
assays = list(
counts = matrix(
rpois(30, lambda = 5), nrow = 15, ncol = 20,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))
)
),
colData = data.frame(
Cell_ID = paste0("RHC", seq(20)),
Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,
replace = TRUE)
),
rowData = data.frame(
Gene_ID = paste0("Gene", seq(15))
)
)
SDDLS <- createSpatialDDLSobject(
sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE
)
SDDLS <- genMixedCellProp(
object = SDDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
num.sim.spots = 100,
train.freq.cells = 2/3,
train.freq.spots = 2/3,
verbose = TRUE
)
SDDLS <- simMixedProfiles(SDDLS)
# training of DDLS model
SDDLS <- trainDeconvModel(
object = SDDLS,
batch.size = 10,
num.epochs = 5
)
# evaluation using test data
SDDLS <- calculateEvalMetrics(object = SDDLS)
# bar error plots
barErrorPlot(
object = SDDLS,
error = "MSE",
by = "CellType"
)
barErrorPlot(
object = SDDLS,
error = "MAE",
by = "nCellTypes"
)
[Package SpatialDDLS version 1.0.2 Index]