spatpca {SpatPCA}R Documentation

Regularized PCA for spatial data

Description

Produce spatial dominant patterns and spatial predictions at the designated locations according to the specified tuning parameters or the selected tuning parameters by the M-fold cross-validation.

Usage

spatpca(
  x,
  Y,
  M = 5,
  K = NULL,
  is_K_selected = ifelse(is.null(K), TRUE, FALSE),
  tau1 = NULL,
  tau2 = NULL,
  gamma = NULL,
  is_Y_detrended = FALSE,
  maxit = 100,
  thr = 1e-04,
  num_cores = NULL
)

Arguments

x

Location matrix (p \times d). Each row is a location. d is the dimension of locations

Y

Data matrix (n \times p) stores the values at p locations with sample size n.

M

Optional number of folds for cross validation; default is 5.

K

Optional user-supplied number of eigenfunctions; default is NULL. If K is NULL or is_K_selected is TRUE, K is selected automatically.

is_K_selected

If TRUE, K is selected automatically; otherwise, is_K_selected is set to be user-supplied K. Default depends on user-supplied K.

tau1

Optional user-supplied numeric vector of a non-negative smoothness parameter sequence. If NULL, 10 tau1 values in a range are used.

tau2

Optional user-supplied numeric vector of a non-negative sparseness parameter sequence. If NULL, none of tau2 is used.

gamma

Optional user-supplied numeric vector of a non-negative tuning parameter sequence. If NULL, 10 values in a range are used.

is_Y_detrended

If TRUE, center the columns of Y. Default is FALSE.

maxit

Maximum number of iterations. Default value is 100.

thr

Threshold for convergence. Default value is 10^{-4}.

num_cores

Number of cores used to parallel computing. Default value is NULL (See RcppParallel::defaultNumThreads())

Details

An ADMM form of the proposed objective function is written as

\min_{\mathbf{\Phi}} \|\mathbf{Y}-\mathbf{Y}\mathbf{\Phi}\mathbf{\Phi}'\|^2_F +\tau_1\mbox{tr}(\mathbf{\Phi}^T\mathbf{\Omega}\mathbf{\Phi})+\tau_2\sum_{k=1}^K\sum_{j=1}^p |\phi_{jk}|,

\mbox{subject to $ \mathbf{\Phi}^T\mathbf{\Phi}=\mathbf{I}_K$,} where \mathbf{Y} is a data matrix, {\mathbf{\Omega}} is a smoothness matrix, and \mathbf{\Phi}=\{\phi_{jk}\}.

Value

A list of objects including

eigenfn

Estimated eigenfunctions at the new locations, x_new.

selected_K

Selected K based on CV. Execute the algorithm when is_K_selected is TRUE.

selected_tau1

Selected tau1.

selected_tau2

Selected tau2.

selected_gamma

Selected gamma.

cv_score_tau1

cv scores for tau1.

cv_score_tau2

cv scores for tau2.

cv_score_gamma

cv scores for gamma.

tau1

Sequence of tau1-values used in the process.

tau2

Sequence of tau2-values used in the process.

gamma

Sequence of gamma-values used in the process.

detrended_Y

If is_Y_detrended is TRUE, detrended_Y means Y is detrended; else, detrended_Y is equal to Y.

scaled_x

Input location matrix. Only scale when it is one-dimensional

Author(s)

Wen-Ting Wang and Hsin-Cheng Huang

References

Wang, W.-T. and Huang, H.-C. (2017). Regularized principal component analysis for spatial data. Journal of Computational and Graphical Statistics 26 14-25.

See Also

predict

Examples

# The following examples only use two threads for parallel computing.
## 1D: regular locations
x_1D <- as.matrix(seq(-5, 5, length = 50))
Phi_1D <- exp(-x_1D^2) / norm(exp(-x_1D^2), "F")
set.seed(1234)
Y_1D <- rnorm(n = 100, sd = 3) %*% t(Phi_1D) + matrix(rnorm(n = 100 * 50), 100, 50)
cv_1D <- spatpca(x = x_1D, Y = Y_1D, num_cores = 2)
plot(x_1D, cv_1D$eigenfn[, 1], type = "l", main = "1st eigenfunction")
lines(x_1D, svd(Y_1D)$v[, 1], col = "red")
legend("topleft", c("SpatPCA", "PCA"), lty = 1:1, col = 1:2)


## 2D: Daily 8-hour ozone averages for sites in the Midwest (USA)
library(fields)
library(pracma)
library(maps)
data(ozone2)
x <- ozone2$lon.lat
Y <- ozone2$y
date <- as.Date(ozone2$date, format = "%y%m%d")
rmna <- !colSums(is.na(Y))
YY <- matrix(Y[, rmna], nrow = nrow(Y))
YY <- detrend(YY, "linear")
xx <- x[rmna, ]
cv <- spatpca(x = xx, Y = YY)
quilt.plot(xx, cv$eigenfn[, 1])
map("state", xlim = range(xx[, 1]), ylim = range(xx[, 2]), add = TRUE)
map.text("state", xlim = range(xx[, 1]), ylim = range(xx[, 2]), cex = 2, add = TRUE)
plot(date, YY %*% cv$eigenfn[, 1], type = "l", ylab = "1st Principal Component")
### new loactions
new_p <- 200
x_lon <- seq(min(xx[, 1]), max(xx[, 1]), length = new_p)
x_lat <- seq(min(xx[, 2]), max(xx[, 2]), length = new_p)
xx_new <- as.matrix(expand.grid(x = x_lon, y = x_lat))
eof <- spatpca(x = xx,
               Y = YY,
               K = cv$selected_K,
               tau1 = cv$selected_tau1,
               tau2 = cv$selected_tau2)
predicted_eof <- predictEigenfunction(eof, xx_new)
quilt.plot(xx_new,
           predicted_eof[,1],
           nx = new_p,
           ny = new_p,
           xlab = "lon.",
           ylab = "lat.")
map("state", xlim = range(x_lon), ylim = range(x_lat), add = TRUE)
map.text("state", xlim = range(x_lon), ylim = range(x_lat), cex = 2, add = TRUE)
## 3D: regular locations
p <- 10
x <- y <- z <- as.matrix(seq(-5, 5, length = p))
d <- expand.grid(x, y, z)
Phi_3D <- rowSums(exp(-d^2)) / norm(as.matrix(rowSums(exp(-d^2))), "F")
Y_3D <- rnorm(n = 100, sd = 3) %*% t(Phi_3D) + matrix(rnorm(n = 100 * p^3), 100, p^3)
cv_3D <- spatpca(x = d, Y = Y_3D, tau2 = seq(0, 1000, length = 10))
library(plot3D)
library(RColorBrewer)
cols <- colorRampPalette(brewer.pal(9, "Blues"))(p)
isosurf3D(x, y, z,
         colvar = array(cv_3D$eigenfn[, 1], c(p, p, p)),
         level= seq(min(cv_3D$eigenfn[, 1]), max(cv_3D$eigenfn[, 1]), length = p),
         ticktype = "detailed",
         colkey = list(side = 1),
         col = cols)


[Package SpatPCA version 1.3.5 Index]