summary.KS_pred {SpatFD} | R Documentation |
Summary of KS_pred objects
Description
This functions shows a summary of the main objects of KS_pred objects.
Usage
## S3 method for class 'KS_pred'
summary(object, ...)
Arguments
object |
Object of class 'KS_pred'. |
... |
arguments from summary |
Value
This functions prints according to method computed: eigenvalues, variance of prediction and each of the models.
Author(s)
Joan Nicolás Castro jocastroc@unal.edu.co.
References
Bohorquez, M., Giraldo, R., & Mateu, J. (2016). Multivariate functional random fields: prediction and optimal sampling. Stochastic Environmental Research and Risk Assessment, 31, pages53–70 (2017).
See Also
Examples
library(gstat)
data(AirQualityBogota)
newcoorden=data.frame(X=110000,Y=125000)
# Recibir los datos, suavizarlos y ACP
SFD_PM10 <- SpatFD(PM10, coords = coord[,2:3], basis = "Bsplines", nbasis = 17,
norder=5, lambda = 0.00002, nharm=3)
#Variogram model for each component
modelos <- list(vgm(psill = 2634000, "Exp", range = 2103.25, nugget = 0),
vgm(psill = 101494.96, "Exp", range = 1484.57, nugget = 0),
vgm(psill =53673, "Exp", range = 42406, nugget = 0))
#Genera los scores y los lambdas para predecir en nuevas coordenadas
#method = "lambda"
KS_SFD_PM10_l <- KS_scores_lambdas(SFD_PM10, newcoorden ,method = "lambda",
model = modelos)
summary(KS_SFD_PM10_l)
[Package SpatFD version 0.0.1 Index]